3.2.2 信号预处理(累加平均)
由于光纤测温系统中的噪声主要是具有零均值的统计特性,可以用数字累加的方式去除系统中的低频噪声干扰,用噪声的统计特性来达到降噪的目的。为提高信噪比,信号处理采用数字平均的方法,即将一次测量的N点数据依次存储到DSP内存单元中,将下一次测量的N点数据与内存对应单元的数据相加,再放回原内存单元,依次循环M次,然后,对各单元求平均。图3给出数字累加流程图。
将每次测量的N点数据写成向量的形式,即第i次的测量结果可表示为:
即向量B的每个元素[b1,b2,b3,…bN]代表各个测量点M次测量的均值。设被测信号f(t)=s(t)+n(t),其中s(t)为原始信号,n(t)为方差σ2的Gaussian白噪声,服从N(0,σ2)分布。
则第j点的M次测量的数字平均可表示为
式中T为取样间隔。
由式(3)可得信噪比(SNR):
式中Pa,PN分别表示以方差定义的信号和噪声功率,单位为J/s;SNRbj,SNRaij分别表示bi和aij的信噪比,单位为dB。
由式(4)可知,经M次数字平均后,采样信号的信噪比有很大改善。由于对每个bi相对于aij都满足式(3),故均值序列B相对于单次测量序列Ai也满足式(3)。因此,当M足够大时,可以将序列B作为待测信号的一个无偏估计。由以上分析可知,采用数字平均的方法可大大提高采样信号的信噪比。
3.2.3 利用小波变换去噪声的理论依据
由于白噪声具有负的Lipschitz指数,且其幅度和稠密度随尺度增加而减少,因此如果某个信号的小波变换局部模极大值及稠密度随尺度的减小而快速增大,则表明该处的奇异性主要由噪声控制,在消噪时应该去除。利用信号和噪声在小波变换各尺度上的不同传播特性,把有用信号从噪声中提取出来。
(1)信号的特性常用信号Lipschitz指数大于零,即使是不连续的奇异点信号只要在某一领域中有界,也有a=O。而且,在较小的尺度上,模极大点的个数基本相等。
(2)噪声的特性 噪声所对应的Lipschitz指数通常是小于零的。如高斯白噪声是一个几乎处处奇异的随机分布,它具有负的Lipschitz指数,而且,高斯白噪声的平均稠密度是反比于尺度2j的,即尺度越大,其平均稠密度越稀疏。
以上分析表明,信号与噪声在小波变换各尺度上的模极大值居于截然不同的传播特性,这为利用小波变换模极大值去噪提供了重要依据。通过观察不同尺度上的小波变换模极大值的渐变规律,模极大值点的分布规律,估计奇异点位置及其Lipschitz指数,即可将信号与噪声分离,实现小波去噪。