由此可知,基于1T1R存储单元结构,双极型RRAM存储器比单极型RRAM存储器更有优势,因为其RESET过程的写速度要快得多,达到一个量级以上。同时,如图3和图4所示,1T1R存储单元结构对单极型RRAM存储器的RESET过程的驱动能力也有限,只达到1 V左右,这就增加了在1T1R单元存储结构中使用单极型RRAM存储器的限制。
在图5中,以SET过程为例,反映了BL和WL端的输入脉冲电压值uP对RRAM器件速度的影响,并针对180 nm,90nm和65 nm MOS管的情况进行了比较。由的延时图可见,随着BL和WL端的输入脉冲电压的增加,基于1T1R结构的RRAM存储单元在SET过程的写速度总体上是不断增加的。这说明基于1T1R结构的RRAM存储器存在对高速度和低功耗要求的矛盾,需要在具体设计中进行折衷考虑。需要注意的是,当前讨论的所有延时都是1T1R结构中MOS晶体管对存储电路单元造成的延时影响tMOS,并没有考虑RRAM器件本身的延时tnRRAM实际应该是 tDELAY=tMOS+tRRAM。
2.3 RRAM单元电路功耗的Spice仿真与分析
基于上面建立的双极型和单极型RRAM模型,下面针对图1所示的1T1R存储单元结构,使用Spice电路仿真软件对RRAM单元电路部分造成的功耗进行了仿真。
由于双极型和单极型RRAM存储器的SET和RESET过程的电阻转变所需的驱动能力不同,图6和图7分别为对应的器件对1T1R结构存储单元总功耗pM的影响,并同时比较了对应180 nm,90 nm和65 nmMOS管的情况。
由图6和图7可以看到,无论是双极型还是单极型RRAM存储器,RESET过程的功耗比SET过程要大得多,可能是因为RESET过程中,RRAM处于低阻态,流过单元电路的电流很大;而SET过程中,RRAM处于高阻态,流过单元电路的电流很小。
另外,无论是双极型还是单极型RRAM存储器,1T1R结构的存储单元的总功耗与MOS管的尺寸无关。这也表明,随着MOS管的尺寸减小,对适用于1T1R存储单元结构的双极型和单极型RRAM器件性能指标的要求都更加严格。
3 结 语
针对阻变非易失性存储器技术,设计了基于1T1R结构的存储单元,并使用Spice仿真软件,对基于1T1R结构的双极型和单极型的RRAM存储单元电路的速度和功耗特性进行模拟仿真,并对结果进行总结和分析,为RRAM器件的进一步应用提供参考和帮助。