高压功率放大部分不仅要对前级的低压扫描脉冲进一步拉高,同时还要提供电流负荷能力,这样才能对列功率系统的灰度显示提供足够的电流。一般的晶体管和MOS管提供电流只有数百毫安,这对于系统来讲可能会有提供功率不足的现象,所以功率型MOS管是该设计的最佳选择。
如图3所示,采用的是由功率型MOS管组成的推挽电路,低压扫描脉冲进入到高压驱动单元进行放大。电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。图3中MOS管Q1,Q2的参数相同,以推挽方式存在于电路中。当脉冲为高电平时,Q1管导通,Q2管截止,电路输出低电平;当脉冲为低电平时,Q1管截止,Q2管导通,电路输出高电平。通过两只MOS管的交互导通,从而减低了功耗,提高了每个管的承受能力,适合于FED驱动大电流的要求。由电阻R2和二极管D3组成的并联钳位电路,目的是使MOS的导通速度加快。
3 集成矩阵扫描功率放大电路
3.1 STV7697B简介
STV7697B是ST公司生产的一种专用于PDP的扫描驱动芯片,拥有一个频率高达8 MHz的64位的级联移位寄存器,可以实现64路高压大电流输出。通过级联,可以实现任意的垂直像素。低压部分逻辑控制采用5 V的电压,高压部分最大供电电压为170 V,所有的输入均与CMOS兼容。STV7697B同时还具有以下特点:
(1)峰值输出电流一200/750 mA;
(2)最大源极输出电流1 A;
(3)消隐信号控制;
(4)互补的输出控制;
(5)100脚的TQFP封装。
3.2 STV7697B驱动方案
图4是芯片的工作时序波形图,工作时SIN脚接收从控制板发出的扫描信号,极性传输方向选择控制端F/R选择传输方向,信号在行同步时钟CLK的上升沿变化瞬间在移位寄存器中移位前进,在STB控制下移位寄存器的数据就放到锁存器中,当BLK允许输出时,信号经过内部功率放大器增益输出相应的高压信号。
FED矩阵扫描集成驱动电路设计采用的是FPGA芯片控制产生行驱动所需的控制信号,结合STV7697B芯片的内部结构以及时序要求。STV7697B 可级联使用,实现矩阵扫描输出,它的实际设计框图如图4所示。行电路工作时,每一个行周期内,高电平有效的SIN信号先从第一片STV7697B的SIN 端输入,从芯片的SOUT端输出,再与后一芯片的SIN端级联。这样,在行扫描脉冲CLK信号的周期内,扫描数据电平从第一个输出端依次移位到最后一个输出端,各信号经过内部功率放大器增益输出相应行的扫描脉冲,加载到FED显示屏行电极上。
3.3 STV7697B软件设计
根据FED系统的要求,如VGA系统,扫描一行的时间是64 μs,从主板传输过来的信号是8位地址信号和奇偶场鉴别信号,其8位地址信号是通过分频得到的,周期最短的信号a[O]周期64μs,可以采用上升沿触发的方式,在奇偶场信号RTSO为低的时候,当a[0]上升沿到来时,令SIN=1,CLK=a[0],清场信号CLR为低,同时计数器n开始计数,a[0]每到来一次上升沿,n就加1,当n>1时,SIN=0;而当RTSO为高时,清场信号为高,同时另外一场开始工作。其中信号/STB,POL,BLK和F/R均由FPGA设定值输出。在一帧图像的时间内,扫描时钟从第一行扫描到第480行,当下一帧到来时,重复前面的过程。
其中高压输出部分在原理上是一个64位的移位寄存器,其程序如下:
4 混合式矩阵扫描功率放大电路