3.3 数字电容误差平均技术
由于ACEA技术和PCEA技术在工作时都需要增加额外的时钟相,降低了转换速度,O.Bernal等人提出一种数字电容误差平均(Digital Capacitor Error-averagingtechnique,DCEA)技术。这种技术采用上述模拟电容误差平均技术的思想并使其在数字域中实现。他采用电容误差平均的原理得到校对系数,在校对过程中,再根据各级输出调用这些常数。因为DCEA技术不用增加额外的时钟相,所以其速度可以达到PCEA技术的2倍(如表1所示)。以下为DCEA技术的工作原理。
根据式(2),令C1=C(1+α),C2=C(1-αi),出于算法阐述方便性的考虑,这里的电容失配系数定义为2αi。由此可以得出:
DCEA技术的校准过程与文献中的查表校对法类似,从最低位开始到最高位结束。他将CEA技术中模拟域的矛盾成功的转移到了数字域。并通过有效的数字运算将其解决,使得电路的性能得到提高。
4 总结与展望
本文主要介绍3种不同的电容误差平均技术在流水线ADC中的应用。其中ACEA是典型的模拟校准技术,需要增加额外的模拟电路以及额外的时钟来实现;PCEA虽然不用加入额外的模拟电路,但相对于ACEA需要更多的时钟来处理,因此从本质上来说也属于模拟域的范畴;而DCEA技术则属于数字校准方法。从ACEA技术发展到DCEA技术,校准方法也由模拟校准过渡到数字校准,电路性能的提升是显而易见的。随着人们对流水线ADC精度与速度要求的不断提高,其误差校准技术的研究也是日新月异。由于数字校准相对可以带来更低的功耗、更小的面积和更大的设计灵活性,因此可以给校准技术的发展提供更为广阔的空间。总之,随着新的校准技术的运用以及集成电路工艺的发展,流水线ADC必将沿着低功耗、高速度和高精度的的方向不断进步。