程序算法描述如下:
Step 1:开始;
Step 2:系统初始化I2;
Step 3:A/D转换;
Step 4:数据处理;
Step 5:数据滤波;
Step 6:计算信号振幅;
Step 7:是否调节程控放大器,如不需要跳转到Step 3;
Step 8:调节程控放大器增益;
Step 9:跳转到Step 3;
Step 10:结束。
4 实验结果与分析
4.1 采集系统实时仿真
信号采集系统设计完成后,对采集系统的性能进行检验。以振幅为0.00 001 V、频率为100 Hz的正弦信号作为待采集的信号,如图5(a)所示,并混有白噪声作为采集系统的输入信号,输入信号的波形如图5(b)所示。经过放大、滤波及电压抬升之后的信号波形如图5(c)所示。
在DSP里对采集到的信号进行处理,把采集到的信号数据还原为采集前的情况,如图5(d)所示。
有图5(c)可见采集到的信号电压均在0~3 V之间,适合DSP的如入范围,实现了根据信号振幅对信号进行程控的目的。图5(d)是经过简单处理后得到的信号的波形,可以计算出被采集信号的频率为100 Hz、振幅约为10-5V。与图5(b)相比恢复后的信号噪声小了很多,基本和原始信号图5(a)给出的波形相同。由实验结果可知,该系统达到了设计的目标,满足实验的需要。
4.2 实验比较
在实验中,用实验室的动态信号测试分析系统(江苏东华测试有限公司的DH5935N)和本文设计的微弱振动信号自适应采集系统同时对试件进行振动信号采集和处理,采样频率为12 800 Hz。图6(a)和图6(b)为由实验室采集系统得到数据信号的波形图和频谱图,图6(c)和图6(d)为由本文设计的采集系统的波形图和频谱图。可以看出本文设计的系统不仅具有自适应调节放大器增益的功能,还具有高速度、低噪声、无失真的特性。
5 结 语
(1)所设计的系统能根据被测信号的振幅自动调节放大器的增益,从而自适应地完成对不同幅值振动信号的测量和处理,降低了数据采集过程中程控放大器增益的频率,节约了CPU开销。
(2)系统采用TMS320F2812DSP芯片作为核心处理器,DAC0832作为被测信号的振幅控制器,实现了自适应放大器增益的自适应调整,实现检测信号电压不低于1μV,扩大了被测信号的幅值范围。
(3)具有体积小、低功耗、可靠性高和扩展性强等优点。