·上一文章:超低中频CMOS下混频器的设计
·下一文章:电子设备中的绿色设计
从图4可以看出模型的精确度(Rsquare)为O.97。这表明,粒子注入浓度和双峰效应具有非常强的相关性。图5显示,双峰效应对Vt的注入浓度非常敏感。随着浓度的上升,双峰效应越来越明显。这个现象和现有的理论相吻合。由于Vt的注入能量为25 kev,有效掺杂浓度的峰值靠近MOS通道的表面。并且硼的吸出效应(out-doping)明显,随着粒子注入浓度的升高,通道正下方的有效掺杂浓度上升,但侧壁位置的有效浓度变化不大,致使这两个位置的浓度差异增加。同时,硼的有效浓度的增加,会导致通道正下方的阈值临界电压Vt的上升。这个变化会使得MOS通道下方开启时间延迟,从而侧壁寄生晶体管的预先开启时间变长,进一步导致漏电量的增加。同理,采用的双峰效应的量化评估值就会增加,双峰效应明显。与Vt注入相比,Punch-through注入的浓度变化对双峰效应的影响不明显。这是因为铟元素的吸出效应不明显,所以铟的有效浓度的变化对通道正下方和侧壁位置的有效掺杂浓度的差异贡献不大,从而双峰效应对铟的浓度变化相对不敏感。
本文的模型可以用于定性和定量的分析,但是对于MOSFET来说,V的粒子注入条件也影响晶体管整体的电学特性。所以,在确定最优化的掺杂浓度条件时,要综合考虑。
5 结 语
MOSFET的中心区域和侧壁位置的有效掺杂粒子浓度的均匀分布是解决双峰效应的根本条件。不论这两个位置的有效掺杂浓度差异的形成原因,理论上都可以找到一个比较优化的工艺条件,使得有效掺杂浓度分布均匀,从而减少或消除双峰效应的影响。通过对双峰效应的量化评估,建立掺杂浓度和双峰效应相互关系的模型,从定性和定量的角度进一步了解和确定优化条件。