假设m/n为Q2与Q1发射极面积之比,则可得电阻R与支路电流IPTAT关系如下:
式中:VT为热电压VTkT/q;R为多晶电阻。VT的正温度系数与R的负温度系数使得IPTAT正比于绝对温度。Q3支路在提供一个负温度系数pcas 电压的同时,将M19的栅极电压箝制在固定电位,使得R1两端的电压VR1=VQ1=Veb1,则R1支路电流INTAT可表示为:
设:(ω/l)17/(ω/l)18=k,则:
调节R,R1,k,使得эI/эt=0,可以得到一路与温度无关的电流I。电流I1为另一路镜像。这种以热电压为基准的自偏置电路对振荡器的频率进行了很好的温度补偿。共源共栅电流镜具有较大电源抑制比,使得电流受电源电压影响小。此电路既用作基准电流电路,也是芯片内部其他电路的偏置电路。
2.2 与温度无关的基准电压
基准电压电路如图3所示。运放由自偏置基准电流电路提供偏置电流,将A,B两点箝制在相等电位上,假设A,B两点电压分别为VA,VB,有:
输出电压Vbg可表示为:
假设m1/n1为Q5与Q4发射极面积比,利用式(7)、式(8)消去电流可得:
将式(9)对温度求偏导数有:
调节Rtrim,R5,R6使得эVbg/эt=0,可以得到零温度系数的基准电压Vbg,达到温度补偿的目的。
2.3 比较器RS锁存器设计
如果考虑比较器、锁存器和开关管S1,S2的传输延时td,则振荡器的频率可以表示为:
由上式可知,经精确补偿电流和电压后,只有通过减小传输延时td来减低传输延时对振荡器频率的影响。比较器采用全差分结构,以获得较高的速率和高电源电压抑制比。使用小尺寸器件可减小开关的传输延迟,另外比较器迟滞效应也会给振荡器频率带来一定误差。假设由于比较器迟滞带来上升延迟t1、下降延迟t2,则周期误差为:
采用两个比较器的对称结构,保持Ich1=Ich2,Cl=C2,使得基准电流对电容充放电的时间相同,有t1=t2。因此双比较器对称结构设计可有效消除传输延迟的频率偏差,提高振荡器的精度。RS锁存器由两个NOR组成。
2.4 数字修调设计
在振荡器设计中,由于工艺偏差等原因会产生频率偏差。为保证频率精度,有必要采用数字修调控制可配置寄存器对振荡器频率进行矫正,以得到精准的目标频率。
2.4.1 电流粗调频率可选
由图2电路可见,开关管EN1闭合,EN2断开时,Ich=I,选择4 MHz频率输出;开关管EN1关闭,EN2断开时,Ich=I1,选择2 MHz频率输出。
2.4.2 电阻微调频率
带隙基准电路的电阻微调网络如图4所示。R按照RN=2n-1RLSB取值,所有开关由片上可配置寄存器控制,通过控制Tr1~Tr8,可使电阻在256阶精度变化,使得基准电压Vbg的变化梯度为256阶,从而实现频率256阶精度微调。
十六进制寄存器为FFH状态时,Tr1~Tr8全为1,开关管均闭合,Rtrim最小,基准电压Vbg输出最小,振荡器输出最大频率fmax;十六进制寄存器为00H状态时,Tr1~Tr8全为O,开关管均断开,Rtrim最大,基准电压Vbg输出最大,振荡器输出最小频率fmin。设置寄存器为80H状态则对应频率振荡器的中心频率fOSC,该频率可通过电阻网络在fmin~fmax之间调节,可调精度为:
在微调电阻阵列的设计中,要充分考虑晶体管的工艺偏差和开关的传输延迟,减小开关晶体管的导通电阻对trim电阻的影响。
3 测试结果及分析
基于CSMC O.5 μm CMOS工艺对所提电路进行流片,其电路的显微照片如图5所示。