根据或运算的特点,求或运算时,只要将Y1、Y2卡诺图中出现的所有l都画入包围圈,然后根据卡诺图写出表达式。
2)求两逻辑函数Fl和F2的与运算Fl·F2
根据与运算的特点,求与运算时,只要将F1、F2卡诺图中重复出现的l画入包围圈,然后根据卡诺图写出表达式。
3)求两逻辑函数Fl和F2的异或运算Fl+F2
根据异或运算的特点,求异或运算时,只要将Fl、F2卡诺图中不重复出现的l画入包围,然后根据卡诺图写出表达式。
例:已知两逻辑函数F1(A,B,C)=∑m(0,1,3),F2(A,B,C)=∑m(0,4,5,7),试用卡诺图分别求出F1+F2;Fl·F2和Fl+F2。
解:
1)将逻辑函数Fl、F2在同一张卡诺图中表示出来,将函数出现的1填在卡诺图小方格的左上角,将函数F2出现的l填在卡诺图小方格的左下角,如图4;
2)求Fl+F2时,将Fl、F2卡诺图中出现的所有l都画入包围圈,如图5;
3)求F1·F2时,将F1、F2卡诺图中重复出现的1画入包围圈,如图6;
4)求F1+F2时,将F1、F2卡诺图中不重复出现的1画入包围圈,如图7;
5)根据图5、6、7写出函数表达式:
1.4 使用降维卡诺图化简多变量函数
在卡诺图中,通常我们用“0”、“1”以及无关项“d”(或用“×”表示)作为卡诺图中的单元值,函数的变量都作为卡诺图的变量,一般来说,卡诺图的维数也就是函数的变量数.如果将某些变量也作为图中的单元值,则所得到的卡诺图维数将减少,这样的卡诺图叫做降维卡诺图。在用中规模集成电路,特别是用数据选择器来实现函数时,使用降维卡诺图化简多变量函数是非常有用的。降维卡诺图化简原理在此不再赘述。
例如逻辑函数F(A,B,C,D)=∑m(0,3,5,6,9,10,12,
15)如果选用8选1数据选择器74LSl5l实现组合逻辑函数,由于8选l数据选择器的地址变量为3个,将逻辑函数降维为三维卡诺图后与8选1数据选择器含Di的卡诺图对照比较(见图8),很容易获得数据选择器输入信号与逻辑函数变量的关系:令A2=A,A1=B,A0=C,则Do=D3=D5=D6=D,Dl=D2=D4=D7=D,画出逻辑图,如图9所示。
如果选用4选一数据选择器实现逻辑函数,还可以将三维卡诺图继续降维成二维卡诺图后与4选l数据选择器含Di的卡诺图对照比较(见图11),获得数据选择器输入信号与逻辑函数变量的关系:A1=A,A0=B,D0=D3=CD+CD=C+D,Dl=D2=CD+CD=C+D
用4选一数据选择器实现逻辑函数见图10。
2 结束语
从以上几例论述可知,卡诺图的用途不只限于逻辑函数化简的功能,可广泛用于记忆或设计有关码制,竞争冒险中的判断,数据选择器实现组合逻辑函数和逻辑函数的逻辑运算等,深入理解卡诺图的内涵,巧妙地应用它,能得到意想不到的效果,为数字逻辑电路的分析和综合带来很大的方便。