2.2.2 频率稳定性分析
实现模拟光纤系统,主要考虑参数有:载噪比、带宽和传输系统中的非线性引起的信号失真。因此,这也是影响原子钟5 MHz正弦信号10 ms短期频率稳定度的主要原因。原子钟5 MHz正弦信号是高稳定信号,10 ms短期频率稳定度达2x10-10,经模拟线性传输其基频频率不变,但受系统各种噪声干扰,光器件的非线性失真及光纤线路上的反射、色散等因素影响,时钟频率信号相位改变,且产生谐波分量,最终导致时钟信号频率稳定度降低。因此,在光纤模拟通信系统中,影响原子钟5 MHz正弦信号lO ms短期频率稳定度的主要因素有:激光发射模块中光源的稳定性、激光调制的非线性及电路噪声;PIN光探测模块中的非线性和噪声;光纤连接器接头的光反射;光纤的色散;电子电路的非线性、噪声及电磁干扰;输入输出的电信号由于阻抗不匹配而引起的反射。
当然,光纤的折射率会随温度变化而改变,但这是一个缓慢的过程,其对原子钟5 MHz正弦信号的10 ms短期频率稳定度的影响可忽略不计。
2.2.3 专用设备电路设计
为尽量减少光纤模拟通信系统在传输高稳定原子钟5 MHz正弦信号过程中对其产生的劣化,应选用稳定可靠,非线性失真小,低噪声的光器件和集成电路,并在专用光纤模拟通信设备的电路设计中注意电子电路的非线性、噪声及电磁干扰,从而尽量提高系统的载噪比和线性度。专用光发送机电路设计的重点是激光发射模块电路。图3为激光发射模块电路原理框图。
激光发射模块电路的主要特点为:光源的中心波长为1 310 nm,输出光功率大于4 mW,光谱宽度小于0_3 nm,边模抑制比大于30 dB,载噪比大于50 dB,二阶失真小于-61 dBc。三阶失真小于-65 dBc,平坦度为±1 dB,带宽为45~750 MHz,光纤耦合反射小,还有预失真补偿、APC功率控制和ATC温度控制(带制冷器TEC)等辅助电路,减少激光发射模块电路的非线性失真,降低噪声,稳定工作。