在任何时刻t,EEHTS算法首先检查Alist队列中的第1个任务Ti,函数有3种可能的返回结果:ACCEPT、REJECT和NULL。第2行中如果FPGA空白区域列表B中有合适的位置放置任务Ti,那么将Ti加入到Elist中,然后第6行重新计算1个更加优化的FPGA频率fe,如果fe小于当前FPGA运行的频率fworking,并且在fe下所有Elist中任务均能在其截止期内完成,那么说明可以在保证任务截止期的条件下通过降低频率而降低硬件任务的整体功耗,所以此时算法返回ACCEPT;第13行如果任务即将或者已经错过最迟开始时间,那么此时函数返回REJECT,表示此任务被拒绝;第15行如果当前时刻没有合适的位置,但是任务仍没有到其最迟开始时间,表示在将来的时刻仍然可能获得任务所需资源,所以函数返回结果NULL。
算法1中第6行重新计算FPGA工作频率的算法如算法2所示,其中F是所有硬件任务工作频率值的集合。需要说明的是,同一时刻在FPGA运行的硬件任务的工作频率值必须相同,并且选择5作为FPGA频率的增量也是符合实际FPGA技术情况的。
(2)算法2:选择最优的频率值作为FPGA的运行频率
步骤1:fscheduled,max=min(fi,min|Ti∈Elist)
步骤2:对于F集合中的满足fmin≤f≤fscheduled,max的每个f值,计算:
选取使得计算步骤2中结果最小的,值作为FPGA的运行频率值,从而使得FPGA的总体功耗最低。
3 模拟实验及分析
由于当前并没有一个统一的基准用于评价可重构系统功耗相关的调度算法,因此采取了类似参考文献[2]中的模拟实验模型设计了离散时钟的模拟器,模仿实时系统中的时钟滴答以进行任务截止期的检查。然后设计随机任务生成器,生成分别含有1 000、2 000、3 009、4 000、5 000、6 000个Ti(fi,max,ωi,ai,ci,ti,ei,fworking)的任务集,硬件任务的宽度和执行时间也是随机生成的。
假定目标器件为Xilinx Virtex XCV1000,共96列×64行,其中可用于配置硬件任务的动态部分是80列,其他用于操作系统进行通信和I/O。模拟实验中采用的参数如下:任务的最小宽度ωmin=1,Nmax=80,任务的宽度范围ωi为1~80;fmin=20 MHz,fmax=100MHz,所以各个任务的可运行的最大频率fi,max∈[20,25,…,1 000];任务在fi,max频率时的运行时间ti范围为100~1 000 ms。ei范围为20~200 mJ,ei的大小和任务宽度相关。到达时间范围01.5~500 ms,模拟器的时钟滴答设置为500 μs。分别模拟了采用ELST算法和EEHTS算法的任务集的总体运行时间和整体功耗,如图4和图5所示。从图4中可以看到,采用ELST算法的任务运行时间曲线要比采用EEHTS算法的低,这是因为只采用ELST算法时并不改变FPGA的运行频率,FPGA始终使用最高频率运行,显然这种方法的功耗会大于EEHTS算法,实验结果也证明了这点。如图5所示,EEHTs算法虽然牺牲了一些时间性能,但是硬件任务仍然可以在其截止期内完成,并且相对于ELST算法,硬件任务功耗大约降低了32%。
结 语
在嵌入式系统中,低功耗是非常重要的目标。本文通过对可重构系统中硬件任务调度算法的研究,在对硬件任务调度时加入了对功耗的考虑,动态改变硬件任务运行的频率,从而降低系统整体功耗。