·上一文章:基于FPGA和USB2.0的高速数据采集系统
·下一文章:AD7416在低功耗系统中的应用
(5)测试神经网络:为了检验已经训练过的QNN网络与BP网络的性能,现用测试样本(测试样本数据在输入给神经网络之前也进行归一化处理)对网络进行测试,将测试样本,输入到已训练好的BP神经网络、QNN神经网络,从统计结果可以看出,BP的平均诊断率为66.67%,而QNN的平均诊断率为 100%,QNN与BP相比,故障诊断率提高较多。
从试验可以看出:BP网络对正常状态和R1+50%无法区分,而QNN对三个状态都能正确区分,QNN网络能够对BP网络无法分类的数据进行正确分类,比如说这两组数据(2.811 3 2.816 8 2.812 1 2.809 3 2.808 9 0.008 2),(2.852 0 2.857 9 2.853 2 2.850 4 2.850 0 0.008 7),在实验中,可以观察到:QNN与BP在输入、输出、隐层相同的情况下,增加QNN的隐层神经元的量子能级能提高故障诊断率,与BP隐层神经元相似, QNN隐层神经元的量子能级在增加到某值后继续增加故障诊断率反而减少,隐层神经元的量子能级在增加的同时也降低了网络收敛速度。
6 结论
提出了基于Pspice、主元分析、小波分析与量子神经网络的模拟电路软故障诊断。例题将QNN网络与BP神经网络的相比,QNN克服了BP网络在模糊分类方面的局限性诊断率为100%。