军队靶场训练基地用于跟踪高速运动目标的主要手段是光电跟瞄设备。对于光电跟瞄系统而言,操作训练需要外部目标环境的紧密配合,因此,训练所需的目标环境构建成为对操作手训练和对光电跟瞄设备仿真检测的关键因素之一。如果通过现场飞行试验来构造目标环境,则训练成本过大,还受到天气等环境因素的影响。因此,如何低成本而又高效率地完成操作训练是目前困扰相关军事单位的一个难题。
目前,在靶场训练的项目中,通过研制目标模拟器来构造目标环境,并采用虚拟场景注入的方法来实现。该方法通过事先录制好一段目标场景的图像,操作手根据观看播放的录像,操纵光电跟瞄设备对录像中的目标进行跟踪捕获训练。但此方法没有反馈,而且实时性较差。本文提出一种新的虚拟图像注入方法。该方法实时获得跟踪设备及目标的运行参数,根据速度追踪原理模拟生成目标及背景的图像数据,从而达到跟踪训练的目的。该方法实现简单方便、可操作性强,更加注重操作手对光电跟瞄设备操纵的性能。
1 目标模拟训练系统的运行模式
在工作过程中,首先由操作手根据训练需要设定目标模拟的速度、机动特性等初始参数并送到主控系统;按照设定的目标运行特点在每帧待输出图像上设定、调整目标位置;目标模拟器通过主控计算机接收编码器位置信息,并解算设备运行速度,根据速度追踪原理输出实时跟踪的图像数据;将图像处理系统转换到接收目标模拟器输出图像信息的模式;图像处理器将叠加十字丝的视频图像传送给操作手的监视器;操作手操作单杆控制伺服系统运转,使回转平台运转对目标进行模拟捕获;最后,图像处理器根据编码器返回数据实时调整目标位置,完成对目标捕获过程的模拟训练。系统运行模式如图1所示。
2 数学建模
目标模拟器的数学模型基于速度追踪原理:假设目标按照特定速度与设备视轴做等速运动,该速度在单帧合成图片中体现为位置脱靶量,如图2所示。
图2中ΔA和ΔE的初始设置为:
当操作手开始进行手动跟踪时,目标仿真图像的调整数学模型为:
3 硬件设计
目标模拟器由串口转换模块、DSP模块、FPGA模块、Camera Link接口模块组成,结构如图3所示。
DSP采用TI公司的TMS320F2812芯片,它是目前用于控制领域的最高性能的处理器,具有控制精度高、速度快、使用灵活以及集成度高等优点,运行速率可达150 MIPS,指令采用流水线处理,使得数据处理的能力大大增强[1]。设计中主要利用其串行通信(SCI)接口、外部中断(XINTx)接口和外部扩展(XINTF)接口。通过与主控计算机进行通信,接收模拟目标和跟踪设备的参数,并根据建立的数学模型解算出目标及设备的坐标,实时生成目标及背景的图像数据,同时接收时统的同步中断信号。
设计中选用MAXIM公司的MAX3070芯片进行RS-422到RS-232协议的转换,利用DSP2812的SCI模块实现与主控计算机的通信。把MAX3070的DI脚与DSP2812的SCITXD相连,RO与DSP2812的SCIRXD相连,同时为了保证顺利地与主控计算机通信,允许接收RE#脚直接接地,允许发送DI脚直接接VCC。加上两个电阻以及去耦电容实现了串行通信接口的硬件设计[2]。DSP2812通过外部扩展接口(XINTF)与FPGA进行数据传递,将XWE#引脚作为写使能信号与FPGA的I/O脚相连,将XCLKOUT引脚作为写时钟信号与FPGA的I/O脚相连,将16位数据线与FPGA的I/O脚相连,来传送图像数据信号。