在智能测量仪器中,模拟节点通常分布于仪器的各个电路板和功能模块,而每块电路板和功能模块又可能包括多个模拟探测节点。
为此,在设计中往往根据模拟节点的数量选择使用一片或多片多通道串行A/D芯片(如AD公司的AD7812等)构成每块电路板或功能模块的模拟输入通道,而不同电路板或功能模块上的串行设备均挂接在同一串行总线上,由处理器通过控制总线及译码逻辑来选择相应的模拟输入通道并控制相应串行设备的工作。此外,在具体的设计中,往往还可以利用串行总线进行一些辅助电路设计:如利用一些串行D/A转换器构成模拟输出通道,以根据需要产生合适的模拟信号,实现对电路板相关电路的校准与补偿;设计挂接一些串行E2PROM存储器,用来存储相关通道的校准与补偿参数,等等。如图3所示。
3 基于串行总线的模拟节点信号监测设计要点
3.1 串行总线连接
目前,世界各主要半导体制造商提交了多种不同的串行协议,比较典型的有以Motorola公司为代表的SPI(se-rial peripheral interface:串行外围设备接口)、以Philips公司为代表的I2C(Inter IC)以及国家半导体公司为代表的MICROWIRE总线(微总线)等。其中,SPI是一种高速4线同步串行外设接口总线,1条用于串行移位时钟SCK,1条用作从使能信号(SS),另外2条数据线分别用于数据的收发(MISO和MOSI),采取主从式通信方式、全双工传输。传输速率由主控设备编程决定,可选择移位
率、主从模式以及时钟的极性和相位等;I2C总线是一种用双向2线串行总线,1条串行数据线(SDA)和1条串行时钟线(SCL),采用主从方式的同步通信方式,在通信过程通过地址确定通信对象,每个I2C器件都有一个唯一的地址,每个器件既可发送也可接收,是1种多主总线;MI-CROWIRE总线是一种3线同步串行接口总线,1条时钟线(SK)和2条数据收发线(SO和SI)。