SPI端口协议要求系统上电复位后,从机先于主机开始工作。如果从机在主机之后开始工作,就有可能丢掉部分时钟信号,使得从机并不是从数据的第一位开始接收,造成数据流的不同步。可通过硬件延时或软件延时的方法,来确保从机先于主机工作。本设计采用软件延时的办法来实现数据流的同步。这个延时由两部分组成,一部分是DSP串行输出数据的时间延时,另外一部分就是后续数字电路中的延时。延时的具体计算过程如下:数据传输时使用的时钟信号是对总线时钟的2分频,当DSP的主频是60 MHz时,总线时钟频率是30MHz,对它进行2分频,可以计算出SCLK的周期是66.6ns(实际所测出的周期是78.2 ns)。另外通过测试得到PWM电路的延时最长时间是23.6 ns,锁存器的最大延时是7.6 ns,移位寄存器的最大延时是3.O ns。由上述对CPLD数字电路的延时和对SCLK周期的测试,就可以得到这样一个结论:设PWM电路的延时时间为t1、锁存器的延时时间为t2、移位寄存器的延时时间为t3、SCLK的时钟周期是Tc,在SPI传输的过程中,整个电路的延时t可以这样计算:
由于数字电路传输中存在这样的延时,所以在写DSP程序时,需要加入一定的延时。此实验中加入的延时是2μs,可以实现可靠传输。
4 实验结果
本设计采用全数字结构,易于用CPLD实现。以EPM7256为目标芯片,设计并实现了正确的数据传输。当DSP56F801输出的十六进制参数分别为频率字DBOE,相位字0403,A相的占空比字04CE,B相的占空比字04CD时,波形输出如图7、图8所示。图7给出了信号发生器A相输出信号的实测波形,信号占空比调节为20%;图8给出了A相输出信号1和B相输出信号l的实测波形,两相信号相位差调节为常用的90°。该实验结果表明,参数传输正确,波形输出良好。
结 语
SPI通信方式具有硬件连接简单、使用方便等优点,应用广泛。采取硬件和软件相结合的措施,可以确保SPI通信中数据流的同步,实现可靠通信。本文给出了DSP多SPI端口通信的设计与实现过程,讨论了其中的关键技术问题。SPI多端口通信方法基于CPLD实现,易移植,易于实现功能扩展,可广泛应用于各种采用SPI通信方式的自动化装置。