图2 混合动力汽车依赖于对机械、电力和软件技术的有效集成
图3 通用的鲁棒性设计系统框图是以Taguchi方法为基础的
设计流程
基于建模和仿真的鲁棒设计流程必须紧跟着系统过程。这个过程的关键是确定:
-系统的关键性能衡量标准;
-以能够突出这些衡量标准的方式对系统进行建模;
-在系统开发过程的每一个阶段验证衡量标准;
鲁棒设计流程具有基本的开发进程,需要采用此处显示的仿真能力。
图4有效的鲁棒设计过程取决于系统开发流程,并需要先进的仿真能力
这种鲁棒设计流程可以采用混合动力汽车系统的开发过程方便地加以描述。性能衡量标准由设计规范导出。典型的混合动力汽车设计规范将包含若干性能要求。举一个例子,汽车通常都要满足排放、性能和燃油经济性的要求。这些要求中的每一种都成为了在设计过程中必须被分析的性能衡量标准。对于现在的讨论而言,燃油经济性将被用作关键的性能衡量标准。
采用所选的燃油经济性衡量标准,设计团队必须选择或开发仿真模型以便突出影响该标准的设计变量。因为鲁棒设计流程可能是密集仿真,模型的选择要优化仿真精度和仿真性能。
当开发用于鲁棒设计流程的开发模型的时候,设计团队应该采用硬件描述语言(HDL)来创建模型,利用HDL就让设计团队能够更好地控制模型精度和性能,包括在不同的设计抽象级创建模型的能力。新思公司的MAST语言是汽车行业用于对混合动力系统建模的事实标准;VHDL-AMS是另一种可选的建模语言,最近已由IEEE标准化。这两种语言都得到Saber仿真器的支持。
验证额定系统的工作
一旦对系统的建模完成,重点就可以转向分析燃油经济性,下一步是验证混合动力汽车的额定燃油经济性性能。额定分析显示在理想条件下设计的最佳情形的燃油经济性。要采用标准的工作点、时域和频域分析对设计进行分析。从额定分析得到的燃油经济性结果成为鲁棒设计流程中其它步骤的性能基准。
识别影响性能的参数
混合动力汽车模型应该包含影响燃油经济性的关键变量。这些变量由设计团队根据其对汽车系统的知识来选择。一旦选择好变量,设计团队就要识别那些对汽车的燃油经济性影响最大的变量。
灵敏度分析是分析对系统影响最大的参数的最有效的办法。利用灵敏度分析,可以分析汽车的燃油经济性随各系统参数变化而变化的情况。这些参数以及它们对混合动力汽车性能的影响,成为其它设计过程的焦点。