·上一文章:基于研华CPCI总线架构设计的实时图像信号处理平台
·下一文章:软件仿真提高PCB设计效率
人脸数据库模块
人脸数据库模块的两个选项分别链接着人脸图像库中整幅人脸图像特征空间和子图像特征空间的数据,供测试时与待测人脸图像对应的特征空间进行对比识别。
将YALE人脸图像库中选定的图像进行训练后,得到人脸图像矩阵、整幅人脸图像的特征脸空间、子图像的特征脸空间等数据,存储在人脸数据库中,以备实时调用。加入新的人脸图像的类别样本时,需要重新针对所有样本图像进行训练,更新人脸数据库。
人脸图像识别模块
人脸图像识别模块链接着基于贝叶斯估计的分类识别方法、基于RBF网络和贝叶斯分类器融合的人脸识别方法两个选项。
贝叶斯估计识别模块
人脸图像分块后应用奇异值分解方法进行数据压缩,对每个特征分块设计一个贝叶斯分类器,最后将这些分类器融合(如图3所示)。
本文采取加权求和的方法:
其中,S(Ii,Ij)表示两幅图像Ii与Ij的相似度,L是贝叶斯分类器(FBBC)的总数,是Ii与Ij的第b个特征块之间的差值。是由第b个贝叶斯分类器计算出的类条件概率密度。wb是第b个贝叶斯分类器对应的权值。
RBF神经网络识别模块
RBF神经网络为三层结构(如图4所示)。