Rudolph公司数据分析和再检查事业部的副总裁兼总经理Mike Plisinski指出,如何有效地将数据转化为信息仍在探索中。“我们现有的技术能够减少目前fab生产过程中产生的海量数据,并将其转化为可用的信息。”他说:“市面上总是有空间信号分析系统在出售,但是象ADC系统一样,它们从来都不能提供合适的性能和易用性来满足生产的要求。目前已经有些算法能够做到这点。我们已经成功地将用户必须再检查的数据量减少了20-30%。”
LER和线宽粗糙度(LWR)的重要性与日俱增,这就是为什么需要自动化程度更高的分类引擎的原因。可以用模数转换器(ADC)引擎来判断捕获的缺陷并将它归类;如果它属于已知的缺陷类型,那么用户就知道引起问题的原因;如果是未知的类型,用户至少知道有一个图形的形式需要检查。如果没有全自动系统,就必须进行手动再检查,这会很耗时,而且成品率的提升不会太快。
传统上,SEM不太专注于ADC。针对SEM的ADC是存在的,但它直到最近才变得比较普遍。这意味着需要维持多ADC系统,这可能会出现问题。需要采用专家系统来简化分析过程。
套刻精度和掩膜版
套刻精度已经成为越来越严重的测量挑战,因为现在基于光学的测量方法已经接近其极限。Hermes Microvision公司的执行副总裁Jack Jau说:“这不是一个工程开发的问题。扩展现有的测量方法似乎很困难,所以SEM等创新方法的使用就变得很有必要,需要进行深入的研发。”
当尺寸变小时,令人讨厌的缺陷将变得具有破坏性,Jau同意这个观点。“图形错误或系统缺陷会导致不合适的OPC或工艺窗口缩小等问题,从而正在成为主要的成品率杀手。DFM号称能够解决这个问题;然而,它需要传感器来观察这个问题并反馈到设计端。”他说:“采用有效的计量或检查设备作为传感器已 经变得必不可少。”
掩膜版缺陷是个严重的问题,因为它们会被复制。“晶圆上的一个缺陷可能会使一块芯片失效。”Veeco Instruments公司的高级应用工程师Ingo Schmitz说:“但是如果在掩膜版上有一个致命的缺陷,它能使占1/4晶圆面积的整个闪存区域失效,而且根据程度的不同,它甚至可能会毁掉整个晶圆。”
已经出现的掩膜版修复方法有两种。一种是聚焦离子束(FIB)技术,另一种利用原子力显微镜(AFM)。后者类似于AFM设备,用刀片状的针尖磨掉多余的材料,比如多余的铬,来修复掩膜版。这就需要知道掩膜版上的缺陷是突出的缺陷还是针孔。而光学技术就很难对它们进行表征。
使用基于束的修复方法——基本上是离子束研磨或淀积——必须首先知道缺陷的体积以计算淀积、刻蚀或研磨步骤所需的离子剂量。掩膜版制造厂先对缺陷进行定位,然后用AFM来分类和表征它们的几何结构和体积。而修复所需的剂量取决于形态测量的结果。
现在,尺寸为15到20nm的颗粒已经开始引起关注。AFM应该对这样小的颗粒有足够的敏感度,而且可能还需要具备足够的技术能力来检测小到5-10nm的颗粒。
如果缺陷本质上是光学性的
,比如水印,AFM技术就会受到挑战,因为它使用的技术与步进式光刻机不同。水印或沾污会导致印制错误,而对形貌变化敏感的AFM却可能无法探测到它们。
SEM也无法避免与形貌有关的问题。当使用SEM来对缺陷进行表征时,SEM引起的冲压会使反应腔的内容物脱落到掩膜版上,从而带来二次损害,比如缺陷(如图4所示)。
为了使计量能够不断地提供所需的缺陷检测平台,必须填补设计与制造之间的空白。随着设计复杂度的上升,系统缺陷也在增多。发现系统缺陷,将它们和随机缺陷区分开来以消除前者的产生根源,会变得非常困难。