2.2 输入及输出部分设计
视频回波的输入电路主要完成两部分功能:单端输入转差分输入以抑制噪声,降低共模电压的影响;单端输入部分设计了一个带宽是4 MHz的二阶有源巴特沃思低通滤波器,保证信号的谱纯度同时抑制高频噪声。用AD公司的AD8132把单端输入转换成差分输入。实际应用时需要给AD8132的反相输入端加上与同相输入端完全对称的电路以保证电路工作的稳定性,同时为了更好地去除高频干扰,在差分的输出端用无源低通滤波进行了滤波,最后设计的模拟输入电路图如图4所示。
由于9 MHz的时钟信号不能由晶振直接产生,因此时钟信号由DSP芯片提供,时钟转差分输入由Mcl00EPT20D完成;AD6644_的数字输出信号,应尽量减小容性负载,同时为了保证数据输出端对总线的驱动能力,在输出端加了一个PHILIPS公司的74LVT245作为缓冲。为了保证过零比较的精度,提高抗干扰能力选择LM239D做为过零比较器。
3 软件设计
该数字化设计方案的所有数字处理过程都在DSP芯片内部实现,所以软件设计质量的高低直接决定了整个系统的处理性能。
软件工作过程如下:加电以后系统先进行初始化,同时产生9 MHz的采样信号,然后启动DMA开始数据的传递。由于DMA在传输数据时不占用内部运算单元,因此在进行DMA传输的时候同时进行上一帧数据的卷积运算,计算完卷积后,对每个距离单元抽样得到的数据进行MTI,然后再进行目标识别的算法。由雷达的实际工作时序得到:在进行卷积计算时会发生定时器的中断,执行完定时器的ISR后回到卷积处继续执行;在MTI以及目标识别的算法运行时会产生DMA的中断,执行完DMA的ISR后回到卷积处重新依次执行,但是在执行完卷积运算后依然回到DMA中断发生时的位置进行运算。软件设计框图如图5所示。
4 结 语
用此系统运行整个算法,分析实验结果得到:开机运行640 ms以后就可以得到各个距离单元运动目标的速度以及类别信息,比原系统的检测速度提高30 9/6,同时增加了目标类型分辨即目标识别功能;让系统重复地识别同一种目标分析实验数据得到:对单人这一类目标的识别率达到了7O%,对单车的分辨率达到了75%,而对于多人的分辨率达到65%,多车的分辨率达到了60%。
综合以上实验数据可以肯定设计的硬件系统和软件算法在实际使用中是有效的,因此本系统具有一定的推广和使用价值。