首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
低边与高边电流检测
来源:本站整理  作者:佚名  2009-05-13 10:47:49




例如,如果检流电阻两端产生100mV的检测电压,其共模电压为10V。对应于100mV的满量程输出电压为2.5V,要求精度在1%以内。如果我们简单地通过分压电阻将10V共模电压缩小10倍,如图3所示。运放A1配置成差分放大器,很容易处理1V共模电压。而VSENSE(100mV)将按同样比例降低检测电压,提供给差分运放输入的检测电压只有10mV。为了达到2.5V满量程,必须引入额外的放大器A2,增益设置为250。


注意,A1的输入失调电压毫无衰减地出现在输出端,并送入增益为250倍的放大器A2的输入端。因为这些失调电压与检测信号无关,将叠加到A2输入的均方根值(RSS)内,产生等效失调电压。假设两个运放都有1mV的输入失调,等效失调为
(VOS-EQ)2=(VOS_A1)2+(VOS_A2)2
其中,VOS_A1和VOS_A2是A1和A2的输入失调电压。

因此,以上架构在A2输出端产生的误差电压为250×1.4mV=350mV,这只是输入失调的影响。运放的失调电压将造成14%的系统误差。

电阻不匹配对CMRR的影响
第二个主要的误差源源于运放A1的电阻臂公差。A1的CMRR主要取决于R2/R1和R4/R3。即使两个电阻臂的误差为1%,但仍会产生90μV/V的输出共模增益。利用1%公差的电阻,电阻臂的比例变化也会达到±2%,在最差工作条件下,将会产生3.6mV/V的共模电压误差。因此,对于10V的输入共模电压,在A1输出端可能产生高达36mV的误差(电阻臂1%的比例变化会产生0.9mV的误差)。36mV的误差显然是无法接受的,它会造成增益为250倍的A2进入饱和状态。1%电阻臂变化可能产生的放大后的误差电压为0.9mV×250=225mV。

总误差
总误差包括:A1输入失调电压的RSS、A2输入失调电压以及由于电阻误差造成的输出误差电压。如上所示,1%的电阻公差加上10V的共模变化,在最差条件下可能造成36mV误差。总计RSS输入误差电压为
(VTOTAL_OS)2=(VOS_A1)2+(VOS_A2)2 +(VOS_MISMATCH)2


其中,VOS_A1和VOS_A2是A1和A2的输入失调电压,VOS_MISMATCH是1%电阻臂变化引起的输入误差电压。

即使不考虑温度变化的影响,A1和A2放大器的输入失调电压以及1%电阻臂不匹配所产生的总误差也会导致高达1.67mV×250=417.5mV的误差,是满量程输出的16.7%。另外,对于417.5mV的误差电压,等效于417.5mV/25=16.7mV的输入失调误差,这也是设计中无法接受的。


总误差可以通过使用高精度电阻(0.1%)或有失调电压更低的放大器得以改善。但这将进一步增加了外部元件,提高系统成本。


注意,即使没有负载的情况下,分压电阻R4/R3和R2/R1仍然提供了一条对地的供电电流通路。这一低共模电阻对地通路将对电池供电产品造成很大影响,电阻的漏电流会迅速消耗电池能量。

图4 集成高边电流检测放大器的基本架构


专用高边检流放大器
实际应用不仅需要在高共模电压下检测信号,而且还要求非常好的CMRR和低输入失调电压。图4是常见的集成高边检流放大器(CSA),集成在很小的封装内,从而大大缩小了电路板尺寸。采用高压工艺制造这类IC,使其能够处理高达80V甚至以上的共模电压,即使在电源电压低至2.8V的情况下。


在图4电路中,电流流过检测电阻时将产生一个小的差分电压,加到增益电阻RG1上。该电流(与检测电压成正比)为镜像电流,提供一个以地为参考的输出电流,从高边产生所要求的电位差。该电流输出通过一个电阻或电压缓冲器转换成电压信号。

上一页  [1] [2] [3]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:125,257.80000 毫秒