首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 单元电路介绍 > 其它电路
模块化免疫神经网络模型在计算机病毒分类检测中的应用
来源:本站整理  作者:佚名  2009-06-30 13:38:24



4.4 实验结果统计

在模式识别领域中,Receiver OperatingCharacteristics(ROC)曲线用于比较不同分类检测算法的性能。曲线下的面积越大,则算法分类检测性能越好越稳定。图5为该模型与遗传算法模型以及传统抗体模型的基于MATLAB环境下的仿真测试ROC图。可见,集成新型抗体模型网络ROC曲线下方的面积要大于其它2个网络模型的面积。说明基于模块化的免疫神经网络模型的计算机病毒检测模型性能要优于其它2个,正好支持了文献[2]的结论。文献[2]对基于n-gram的恶意代码检测取得了很好的效果,一共测试了8种分类器,结果如图5、图6,其中Boosted J48性能最优。

分析以上实验数据,可得到以下结果:

1)由表1可知,自体库选得过小,会造成单抗体的高扰动率,频繁更新抗体群,缺乏抗体的多样性,覆盖范围减小。

2)自体库过大,会造成训练网络的时间增多。拟采用200条为自体库大小,对这30万条数据记录通过新模型进行检测,并与单免疫算法模型和传统的抗体网络模型进行对比,如表2。虽然此网络模型在时间上略逊于其他两种已知算法模型,但在准确率上却有明显的提高。

5 小结

由实验可知,基于免疫算法和神经网络的新型网络模型降低了传统的病毒入侵检测模型的误报率和漏报率,提高了免疫系统的学习效率和系统的智能化程度,在系统的容错性上也有较大的改善,对提高系统的检测能力具有重要意义。

上一页  [1] [2] [3]  下一页

关键词:

·上一文章:用CBI协议的USB软驱读取绣花机花版文件
·下一文章:基于ATmega16的气动标记控制系统设计
[] [返回上一页] [打 印]

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:168,839.80000 毫秒