2 Linux超线程感知调度优化
Linux从2.4.17版开始支持超线程技术,传统的Linux O(1)调度器不能区分物理CPU和逻辑CPU,因此不能充分利用超线程处理器的特性。Ingo Monlar编写了“HT-aware scheduler patch”,针对超线程技术对O(1)调度器进行了调度算法优化:优先安排线程在空闲的物理CPU的逻辑CPU上运行,避免资源竞争带来的性能下降;在线程调度时考虑了在两个逻辑CPU之间进行线程迁移的开销远远小于物理CPU之间的迁移开销以及逻辑CPU共享cache等资源的特性。这些优化的相关算法被Linux的后期版本所吸收,具体如下:
(1)共享运行队列
在对称多处理SMP(Symmetrical Multi-Processing)环境中,O(1)调度器为每个CPU分配了一个运行队列,避免了多CPU共用一个运行队列带来的资源竞争。Linux会将超线程CPU中的两个逻辑CPU视为SMP的两个独立CPU,各维持一个运行队列。但是这两个逻辑CPU共享cache等资源,没有体现超线程CPU的特性。因此引入了共享运行队列的概念。HT-aware scheduler patch在运行队列struct runqueue结构中增加了nr_cpu和cpu两个属性,nr_cpu记录物理CPU中的逻辑CPU数目,CPU则指向同属CPU(同一个物理CPU上的另一个逻辑CPU)的运行队列,如图3所示。
在Linux中通过调用sched_map_runqueue( )函数实现两个逻辑CPU的运行队列的合并。sched_map_runqueue( )首先会查询系统的CPU队列,通过phys_proc_id(记录逻辑CPU所属的物理CPU的ID)判断当前CPU的同属逻辑CPU。如果找到同属逻辑CPU,则将当前CPU运行队列的cpu属性指向同属逻辑CPU的运行队列。
(2)支持“被动的”负载均衡
用中断驱动的均衡操作必须针对各个物理 CPU,而不是各个逻辑 CPU。否则可能会出现两种情况:一个物理 CPU 运行两个任务,而另一个物理 CPU 不运行任务;现有的调度程序不会将这种情形认为是“失衡的”。在调度程序看来,似乎是第一个物理处理器上的两个 CPU运行1-1任务,而第二个物理处理器上的两个 CPU运行0-0任务。
在2.6.0版之前,Linux只有通过load_balance( )函数才能进行CPU之间负载均衡。当某个CPU负载过轻而另一个CPU负载较重时,系统会调用load_balance( )函数从重载CPU上迁移线程到负载较轻的CPU上。只有系统最繁忙的CPU的负载超过当前CPU负载的 25% 时才进行负载平衡。找到最繁忙的CPU(源CPU)之后,确定需要迁移的线程数为源CPU负载与本CPU负载之差的一半,然后按照从 expired 队列到 active 队列、从低优先级线程到高优先级线程的顺序进行迁移。
在超线程系统中进行负载均衡时,如果也是将逻辑CPU等同于SMP环境中的单个CPU进行调度,则可能会将线程迁移到同一个物理CPU的两个逻辑CPU上,从而导致物理CPU的负载过重。
在2.6.0版之后,Linux开始支持NUMA(Non-Uniform Memory Access Architecture)体系结构。进行负载均衡时除了要考虑单个CPU的负载,还要考虑NUMA下各个节点的负载情况。
Linux的超线程调度借鉴NUMA的算法,将物理CPU当作NUMA中的一个节点,并且将物理CPU中的逻辑CPU映射到该节点,通过运行队列中的node_nr_running属性记录当前物理CPU的负载情况。
Linux通过balance_node( )函数进行物理CPU之间的负载均衡。物理CPU间的负载平衡作为rebalance_tick( )函数中的一部分在 load_balance( )之前启动,避免了出现一个物理CPU运行1-1任务,而第二个物理CPU运行0-0任务的情况。balance_node( )函数首先调用 find_
busiest_node( )找到系统中最繁忙的节点,然后在该节点和当前CPU组成的CPU集合中进行 load_balance( ),把最繁忙的物理CPU中的线程迁移到当前CPU上。之后rebalance_tick( )函数再调用load_balance(工作集为当前的物理CPU中的所有逻辑CPU)进行逻辑CPU之间的负载均衡。
(3)支持“主动的”负载均衡
当一个逻辑 CPU 变成空闲时,可能造成一个物理CPU的负载失衡。例如:系统中有两个物理CPU,一个物理CPU上运行一个任务并且刚刚结束,另一个物理CPU上正在运行两个任务,此时出现了一个物理CPU空闲而另一个物理CPU忙的现象。