由于SWC的规范和开发在时间和地点上都是高度分散的,以及许多SWC从许多不同的来源进入设计流程,因此应进行一致性检查,以尽早发现错误。即便只有接口描述,也已经可以进行内部组件之间的接口一致性静态检查。在设计流程的这一点上,增加端到端的时序要求是重要的,以支持后面流程中要求时序信息的先进分析工具。
图2:用户案例1——逻辑设计驱动物理设计
与此同时,可以创建一个有潜力的拓扑结构,它能勾画出分布式汽车网络的逻辑拓扑结构,以及描述传感器、激励器和ECU的连接。通常情况下,一个汽车项目开始于原有设计的重利用,然后对它进行修改。在重利用现有的ECU时,非常详细的ECU信息可以来自企业数据库,或需要定义新的ECU,其技术特性在开发过程中的特定期间是变化的。
在以上两种情况下,功能信息和拓扑信息都可以提供给物理设计流程。物理设计过程的功能级也需要ECU上的数据(如总线系统使用的)。现在的物理设计需要一个子系统设计步骤,在该步骤上,在物理组件映射到汽车上的封装空间(插槽)之前,如ECU和保险丝盒这样的子系统需要做进一步的详细设计。除此之外,在该步骤上,也可以开发出电源/接地概念。
逻辑架构设计的对应步骤是SWC映射到ECU。这也决定了SWC之间的通信方案,即多个SWC是通过总线系统还是内部ECU进行通信。
通信方法的选择对物理设计有直接的影响,这也增加了整个设计过程的复杂性。例如,这取决于是否需要电线、常规电线、双绞线或双股双绞线。
封装步骤之后是物理系统集成,此处,CAD系统的信息用于添加额外的物理信息,如所需的在线连接器和布线通道。
这反过来对设计的逻辑层面有影响,并再次增加了整个设计过程的复杂性。太小的布线通道可能使得无法使用双股双绞线,或太长的电线长度可能使得将某个SWC重定位到另一个ECU上成为一个更具成本效益的替代选择。