全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。全功率带宽是一个很重要的指标,用于大信号处理中运放选型。
建立时间:建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动,这个抖动时间称为稳定时间。稳定时间+上升时间=建立时间。对于不同的输出精度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。
等效输入噪声电压:等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通运放的输入噪声电压有效值约10~20μV。
差模输入阻抗(也称为输入阻抗):差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。一般产品也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管做输入级的运放的输入电阻一般大于109欧。
共模输入阻抗:共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低频情况下,它表现为共模电阻。通常,运放的共模输入阻抗比差模输入阻抗高很多,典型值在108欧以上。
输出阻抗:输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压,这个电压变化量与对应的电流变化量的比值。在低频时仅指运放的输出电阻。这个参数在开环测试。
3. 运算放大器的对信号放大的影响和运放的选型
由于运算放大器芯片型号众多,即使按照上述办法分类,种类也不少,细分就更多了,这对于初学者就难免犯晕。本节力求通过几个实际电路的分析,明确运算放大器的对信号放大的影响,最后总结如何选择运放。
CA3140的主要指标为:
项目 单位 参数
输入失调电压 μV 5000
输入失调电压温度漂移 μV/℃ 8
输入失调电流 pA 0.5
输入失调电流温度漂移 pA/℃ 0.005
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 5000
输入失调电流造成的误差 μV 0.0045
合计本项误差为 μV 5000
输入信号200mV时的相对误差 % 2.5
输入信号100mV时的相对误差 % 5
输入信号 25mV时的相对误差 % 20
输入信号 10mV时的相对误差 % 50
输入信号 1mV时的相对误差 % 500
初步结论是:高阻运放的输入失调电流很小,它造成的误差远远不及输入失调电压造成的误差,可以忽略;而输入失调电压造成的误差仍然不小,但是可以在工作范围的中心温度处通过调零消除。
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 200
输入失调电流温漂造成的误差 μV 0.001
合计本项误差为 μV 200
输入信号200mV时的相对误差 % 0.1
输入信号100mV时的相对误差 % 0.2
输入信号 25mV时的相对误差 % 0.8
输入信号 10mV时的相对误差 % 2
输入信号 1mV时的相对误差 % 20
初步结论是:高阻运放的输入失调电流温漂很小,它造成的误差远远不及输入失调电压温漂造成的误差,可以忽略;在使用高阻运放时,由于失调电压温度系数较大,造成的影响较大,使得它不适合放大100mV以下直流信号。若以上两项误差合计将更大。
由于高阻运放的输入失调电流只有通用运放的千分之一,因此若其它条件不变,仅仅运放的外围电阻等比例增加一倍,几乎不会造成可明显察觉的误差。
HA5159的主要指标为:
项目 单位 参数
输入失调电压 μV 10000
输入失调电压温度漂移 μV/℃ 20
输入失调电流 nA 6
输入失调电流温度漂移 pA/℃ 60
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 10000
输入失调电流造成的误差 μV 54.5
合计本项误差为 μV 10054
输入信号200mV时的相对误差 % 5.0
输入信号100mV时的相对误差 % 10.1
输入信号 25mV时的相对误差 % 40.2
输入信号 10mV时的相对误差 % 100.5
输入信号 1mV时的相对误差 % 1005
初步结论是:输入失调电压和输入失调电流造成的误差较大,但是可以在工作范围的中心温度处通过调零消除。其中输入失调电压造成的误差远远超过输入失调电流造成的误差。
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 500
输入失调电流温漂造成的误差 μV 13.6
合计本项误差为 μV 513
输入信号200mV时的相对误差 % 0.3
输入信号100mV时的相对误差 % 0.51
输入信号 25mV时的相对误差 % 2.05
输入信号 10mV时的相对误差 % 5.14
输入信号 1mV时的相对误差 % 51.4
初步结论是:在使用高速运放时,由于失调电压温度系数较大,造成的影响较大,使得它不适合放大100mV以下直流信号。若以上两项误差合计将更大。
若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 10000
输入失调电流造成的误差 μV 109
合计本项误差为 μV 10109
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 500
输入失调电流温漂造成的误差 μV 27.3
合计本项误差为 μV 527
初步结论:仅仅运放的外围电阻等比例增加一倍,运放的输入失调电压和输入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的误差随之增加了一倍。所以,对于高阻信号源或是运放外围的电阻较高时,输入失调电流和输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入失调电压和输入失调电压温漂造成误差,所以这时需要考虑采用高阻运放或是低失调运放。
低功耗运放LF441的主要指标为:
项目 单位 参数
输入失调电压 μV 7500
输入失调电压温度漂移 μV/℃ 10
输入失调电流 nA 1.5
输入失调电流温度漂移 pA/℃ 15