4 运行结果
图4和图5为汽车实际运行时电磁离合器电流和变速箱变比的关系曲线。其中图4为汽车速度从零急加速到120KM/H,到120KM/H后松开油门减速到零时的电磁离合器电流与发动机转速、节气门开度和输入轴转速之间的曲线图。由图可以看出节气门急加到最大后保持一段时间,电磁离合器电流同步紧跟着加,当加到峰值时,继续保持不变,发动机转速也加到一个值保持不变,从图中还可看出电磁离合器电流在增加的过程中,不断在抖动,可知在上升过程中电磁离合器在不断在打滑,在此段时间内发动机转速与输入轴转速不成比例,直到电磁离合器到一个稳定的值后才保持一定的比例关系。当节气门全松开后,电磁离合器电流随之下降到一个小值后保持不变,直到车速达到使变速箱处于由齿轮变速为主时,电磁离合器电流继续减小,当车速为零时,电磁离合器电流随之减小到零。由图4可知,当车速在从零加到120KM/H,电磁离合器电流为零,输入轴转速也慢慢减为零。在整个过程中,我们可看到,节气门开度变化率代表了驾驶员的意图,电磁离合器电流主要由节气门开度来决定。电磁离合器的打滑程度决定了发动机转速和输入轴转速的之间的传输比例关系。
注:深蓝—输入轴转速,黄—节气门开度,紫红—发动机转速,浅蓝—电磁离合器电流
图4 电机加速时的电磁离合器电流关系曲线
图5为汽车速度从零加到120KM/H后又由120KM/H减到零时,位置传感器与输入轴转速、输出轴转速和电机电压之间的关系曲线。由图可知,当汽车速度在从零加到120KM/H过程中,位置传感器变比由最大开始下调直到变为最小,此时对应电机反转。当车速由120KM/H开始下降时位置传感器先保持不变,此时电机不转,同时输入轴转速和输出转速成比例的下降,当车速达到一定的值时位置传感器速比由最小开始上调直到为最大值,此时电机反转(因测试时采用的电流传感器为单方向的,所以图中没有反映出反向电流)。输入轴转速和输出轴转速不成比例的下降直至为零。从图5可以看到车速在上升时,位置传感器速比的测试值不断地减小(对应的转速比增大)。反之,车速在下降的过程中,当车速小于某一值时测试值增加。从而实现了变速箱变比的自动调整。
注:黄—位置传感器,深蓝—输入轴转速,紫红—输出轴转速,浅蓝—电机电压
图5 汽车减速时的变速箱变比——转速曲线
通过运行结果可以看出所设计的TCU可以实现电磁离合器转矩和变速箱变比的自动控制。从实际运行感觉看,起动和停止以及加减速过程平稳。并且具有较好的经济性。