了基于性能指标切换的多模型预测控制算法,这种方法通过在多个操作点附近获取的多个线性模型来设计多个线性控制器,同时根据所提的控制器选择方法来达到非线性控制。将所提基于性能指标切换的多模型预测控制算法施加到仿真系统中,分别进行了设定点跟踪和有干扰两种不同情况的仿真。结果表明,所提算法多模型非线性预测控制算法与普通的DMC相比具有更加良好的稳定性和收敛性,并能做到无偏跟踪。
参考文献
[1] QIN S J, BADGWELL T A. An overview of nonlinear model preDICtive control applICations. In: Algower F, Zheng A, eds. Proceedings of Nonlinear model predictive control workshop—assessment and future directions.Ascona, Switzerland, 1998.
[2] QIN S J, BADGWELL T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice,2003,11(7):733-764.
[3] JOHANSEN T S. Operating regime based process modeling and identification[D]. Norway: University of Trondheim, 1994.
[4] Zhou Chaojun, Jiang Weisun. Two methods of multiple models control for nonlinear process[J]. Signal and Control (China), 1994,23(6):356-330.
[5] BALAKRISHNAN J. Control system design using multiple models, switching, and tuning [D].AmeriCAN: Yale University, 1996.
[6] PISHVAIE M R, SHAHROKHI M. pH control using the nonlinear multiple models, switching, and tunning approach [J]. Ind. Eng. Chem. Res., 2000,39(5):1311-1319.
[7] GALAN O, ROMAGNOLI J A, PALAZOGLU A. Real-time implementation of multi-linear model-based control strategies—an application to a bench-scale pH neutralization reactor[J]. Journal of Process Control,2004,14(5):571-579.
[8] AUFDERHEIDE B, BEQUETTE B W. Extension of dynamic matrix control to multiple models[J]. Computers and ChEMIcal Engineering, 2003,27(8-9):1079-1096.
[9] PORFIRIO C R, NETO E A, ODLOAK D, Multi-model predictive control of an industrial C3/C4 Splitter[J]. Control Engineering Practice, 2003,11(7):765-779.
上一页 [1] [2]