UC3906一个非常重要的特性就是其内部的精确基准电压随环境温度的变化规律与铅酸电池电压的温度特性完全一致。同时,该芯片只需1.7 mA的输入电流就可以工作,因而可减小芯片的功耗,实现对工作环境温度的准确检测,保证电池既充足电又不会严重过充电。除此之外,UC3906芯片还包括一个输入欠压检测电路以对充电周期进行初始化,并可驱动一个逻辑输出。
3 电路设计
3.1 Buck-Boost变换电路的设计
Buck—Boost变换电路如图3所示。为使晶体管工作在开关状态,在其基极与发射极之间施加周期一定、高电平存在时间可调的驱动脉冲信号。在一个周期中晶体管导通时间T册与周期Ts之比称为占空比,用D表示。
以连续导电模式为例分析其工作原理:在晶体管导通,二极管截止期间,电源电压向电感输入能量,靠滤波电容维持输jJj电压基本不变;
在晶体M=Uo/uin=D/(1一D) (1)
由此看出Buck-Boost变换器的稳态电压变比既可小于1(D<0.5时),也可以大于1(D>O.5时),所以Buck-Boost变换器也称为升降压变换器。其优点是电路简单,电压变比可由零到无穷大变化,也就是说既可升压又可降压。因此,当太阳能输出电压发生变化时,只要适当调节Buck-Boost的占空比就可保证蓄电池输入电压的稳定。
3.2 UC3906的外围充电电路的设计
根据前面介绍的UC3906的工作原理,以12 V25 AH铅酸蓄电池为例,设计出的UC3906的外围电路如图4。其中,输入电压Ui。=18 V,过充电压Uoc=15 V,浮充电压UF=14.5 V,过充转换电压U12=14.25 V,浮充转换电压U13=11.7 V,最大充电电流Imax=2.5 A,过充终止电流Ioc=0.25 A。
由于充电器始终接在蓄电池上,为防止蓄电池电流倒流入充电器,在串联调整管与输出端之间串入一只二极管。同时,为了避免输入电源中断后,蓄电池通过分压电阻R,、R2、R3放电,使R3通过电源指示晶体管(脚7)接地。
18 V输入电压加入后,Q1导通,开始恒流充电,充电电流为2.5 A,电池电压逐渐升高。当电池电压达到过充电压Uoc的95%(即14.25 V)时,电池转入过充电状态,充电电压维持在过充电电压,充电电流开始下降。当充电电流降到过充电终止电流(Ioct)时,UC3906的脚10输出高电平,比较器LM339输出低电平,蓄电池自动转入浮充状态。同时充足电指示发光管发光,指示蓄电池已充满。
4 结语
本设计最大的特点就是在传统的控制器的基础上加入了Buck—Boost变换器,并且使用了专门的充电控制芯片UC3906。整个充电器体积小,结构简单,具有良好的充电管理和维护功能,有利于延长蓄电池的使用寿命和提高充电效率,具有非常高的使用价值和推广价值。