对于一般的微带贴片天线,它的辐射激励可以等效成一个谐振回路。在矩形微带贴片天线的基础上,采取E型结构,即沿天线的匹配方向将金属贴片开两条平行宽缝 (见图4)。由于贴片上存在两个缝隙的作用,促使天线的谐振特性受到了影响,即原来的一个谐振回路变成了两个谐振回路,当这两个谐振回路的谐振频点靠得比较近时,就达到了扩展频带的目的。
本文在E型背馈天线的基础上,提出了一种变形的侧馈天线方案,如图5所示。天线主体由一个矩形贴片开缝构成,顶部切去了两个角。由一个功分器和一段微带线作为馈线与芯片匹配,而芯片的另一段通过微带线接地。
由于高介电常数的介质能有效地减小天线的尺寸,所以基片选用尺寸为84 mm×54 mm×1.4mm的陶瓷氧化铝.介电常数为9~10。微带标签天线的物理尺寸为:L1=47.6 mm,L2=4 mm,L3=18 mm,L4=3.5 mm,W1=1 2.6 mm,W2=10 mm,W3=6 mm,W4=2 mm,S=3 mm。
该天线采用的芯片在915 MHz时的阻抗为34.5一j815,呈现明显的容抗。采用AnSOFt公司的电磁仿真软件HFSS 10.O对天线进行仿真。经过调试和优化,得到天线的S11曲线,如图6所示。该天线分别在905 MHz和920 MHz有两个谐振频率。在905 MHz时,S11为一28 dB;在920 MHz时,S11为一37 dB,这两个谐振频率都比较窄,通过调整天线,使两个谐振频率靠近915 MHz,以达到增加带宽的目的。该天线增益在915 MHz时仿真结果为0.34 dBi(见图7),满足RFID系统读取的要求。
将RFID标签天线分别粘附在装水的塑料盒面(塑料盒很薄)、金属面、塑料制品上或直接放在空气中,读写器在902~928 MHz中设置广谱跳频,RF功率设置为36 dBm,读写器天线增益为12 dBi。测试读取距离如表1所示。该RFID标签的工作性能在不同物质环境中表现出较为满意的一致性。
3 结 语
实验测量表明,该天线在金属表面读取距离为11.5m,在不同物质表面读取距离基本不变,且性能稳定。