·上一文章:基于FPGA的混合信号验证流程
·下一文章:FPGA实现OFDM水声通信系统定时同步
构造非单点模糊系统初始参数:选取聚类中心向量Xlc中的各个分量元素
作为式(2)中相应
的初始值;以
与最近的另一个聚类中心欧式距离的一半
作为式(2)中
作为式(2)中相应的初始值;已知训练数据含有大量噪声的情况下,取
步骤2:(1)采用梯度下降算法调整参数
(推导过程省略)。
(2)同时采用遗传算法搜索最佳参数
1)对参数编码。以减法聚类确定的初始参数值为参考,考虑参数的解空间在初始参数值的正负s倍范围内,将解空间转换为二进制,对各参数进行交叉组合编码;
2)随机生成20个个体作为初始群体;
3)将准则函数的数学期望E[φ(e(t))]映射为适应度函数
用该适应度函数对群体中个体的适应度进行评估,当适应度达到标准Ff,max时,进化停止;
4)遗传操作:采用适应度比例方法进行选择,两点交叉方法进行交叉,采用基本变异算子进行变异。
步骤3:梯度下降算法和遗传算法之间的信息交换。遗传算法每进化q代,根据准则函数的数学期望E[φ(e(t))]比较遗传算法和梯度下降算法所得参数的效果。若遗传算法搜索到的参数更好,便用其作为梯度下降算法下一步运算的初始参数;若梯度下降算法得到的参数更好,便用其替代遗传算法的当代群体中适应度最差的一个个体。
步骤4:当准则函数的数学期望E[φ(e(t))]达到标准1-Ff,max时,或者遗传算法进化g代时,算法停止。文中用准则函数在训练数据时间长度内的时间平均代替其数学期望进行运算。
3 基于NSFIS的制导炸弹智能控制系统的仿真设计
按照文献[1]的设计思想,在仿真环境中采用NSFIS设计制导炸弹智能控制系统。