这种解决方法就是由德国倍福公司提出的EtherCAT(Ethernet for Control Automation Technology)。它得到了ETG组织的支持,是一个可用于现场级的超高速I/O网络,使用标准的以太网物理层和常规的以太网卡,传输介质可以是双绞线或光纤。拓扑结构可以是线型、树型和星型结构。EtherCAT使网络性能达到一个新的境界,可以在30 μs内处理1 000个I/O的刷新,包括循环的时间;可以在一个以太网帧中交换多达1 468个字节的协议数据(这几乎相当于12 000个数字的输入或输出),且仅需300 μs。同时,采用IEEE1588标准规定的精确时间同步机制实现分布时钟精确同步,保证了控制器的同步时间偏差小于1 μs。
EtherCAT报文帧格式采用标准以太网的帧头和帧尾,且帧头中Type段的值为0x88A4时,是一个唯一识别EtherCAT报文的标志。EtherCAT的报文直接包括在以太网数据中,且在数据区域并不是只有一个EtherCAT的报文,而是包括n个报文。n表示在系统中所包含的节点的个数。每个报文中包括帧头、数据和WKC(WorKing Counter),用于记录通过报文可以成功寻址的设备数量。EtherCAT报文帧格式如图3所示。
图3 EtherCAT报文帧格式
EtherCAT突破了其他以太网的解决方案的限制,不必在每个连接点接收以太网数据包,然后进行解码并复制为过程数据。而且为了避免通信总线传输的延迟,德国倍福公司率先在EtherCAT中使用了FMMU(FiELDbus Memory Management Unit)前沿技术。整个系统只有一个主站用于系统的控制,其他的都是从站,当数据报文从主站被发出以后,每个从站中的FMMU就可以读出数据报文中指定到此的数据。同样,输入数据可以在数据报文通过时插入到报文中,报文仅有几ns延迟。网络内的最后一个从站向主站发送一个完整的帧,以形成和创建一个物理和逻辑环。EtherCAT还通过内部优先级系统,使实时以太网帧比其他的数据(如组态或诊断数据等)具有更高的优先级。组态数据只在传输实时数据的间隙中传输(如果时间间隙足够传输),或者通过特定的通道传输[3]。
在同步方面,EtherCAT采用IEEE1588标准中定义的精确时钟同步机制,通过一个同步信号周期性地对网络中所有站点的时钟进行校正同步,可以使基于以太网的分布式运动控制系统达到精确同步。这在广泛要求同时动作的分布过程中显得尤为重要,而分布时钟的精确校准是同步的最有效解决方案。在EtherCAT中,数据交换是完全基于硬件“主时钟”和“子时钟”的。每个时钟可以简单和准确地确定另一个时钟的实时偏移量,分布时钟基于该值进行调整,这意味着它可以在网络范围内提供信号抖动小于1 μs的、非常精确的时钟基。而且高性能分布时钟不仅可以用于同步,还可以用于提供数据采集时本地时间的精确信息。同时,EtherCAT引入了时间戳数据类型作为扩展,使得对于速度的精确计算比自由同步误差测量技术更加精确。
EtherCAT作为一种可用于现场级的超高速的I/O网络,在技术方面已经开发出专用的芯片和从站控制器,也已经成为IEC617842标准的一部分。
2.3 网段分隔和通信调度管理
《EPA通信标准》是我国第一个拥有自主知识产权的现场总线国家标准,全称是《用于工业测量与控制系统的EPA通信标准》。它是在国家科技部“863”计划的支持下,由浙江大学、浙大中控、中科院沈阳自动化研究所、重庆邮电学院、清华大学和大连理工大学等单位联合成立的标准起草小组,经过3年多的技术攻关,而提出的基于工业以太网的实时通信控制系统解决方案。
在EPA系统中,将控制网络划分为若干个控制区域,每个控制区域为一个微网段。这种方案能够完全避免冲突的发生,每个微网段通过EPA网桥与其他网段分隔,该微网段内EPA设备间的通信被限制在本控制区域内进行,而不会占用其他网段的带宽资源。处于不同微网段内的EPA设备间的通信,需由相应的EPA网桥转发控制。EPA网桥至少有2个EPA接口,当它需要转发报文时,首先检查报文中的源IP地址、目的IP地址和EPA服务标识等信息,以确认是否需要转发,并确定报文转发路径。因此,任何广播报文的转发也将受到控制,不会发生采用一般交换机所出现的广播风暴。这一方案比单纯集线器方式的反应速度更快,抖动也更小。
2.3.1 实时问题的解决方案
为了提高网络的实时性能,EPA对ISO/IEC8802.3协议规定的数据链路层进行了扩展,增加了一个EPA通信调度管理实体(CommunICation Scheduling Management Entity,CSME)。CSME不改变IEC8802.3数据链路层提供的服务,也不改变与物理层的接口,只是完成对数据报文的调度管理,包括周期报文和非周期报文的调度。对于非周期报文,CSME不作任何处理直接传输;而对于周期性的报文,则要先根据事先组态好的控制程序和优先级大小,传送给数据传送设备,经过处理后再传到网络上,以避免同时向网络上发送数据,产生报文冲突。
2.3.2 通信调度机制
在周期报文传输阶段,每个EPA设备向网络上发送的报文是包含周期数据的报文。周期数据是指与过程有关的数据,例如需要按控制回路的控制周期传输的测量值、控制值,或功能块I/O之间需要按周期更新的数据。周期报文发送的优先级应为最高。
在非周期报文传输阶段,每个EPA设备向网络上发送的报文包含非周期数据的报文。非周期数据是指用于以非周期方式在两个通信伙伴间传输的数据,如程序的上下载数据、变量读/写数据、事件通知和趋势报告等,以及ARP、RARP、HTTP、FTP、TFTP、ICHP和IGMP等应用数据。非周期报文按其优先级高低,IP地址大小及时间有效方式发送。EPA通信周期如图4所示。
图4 EPA通信周期
目前为止,EPA标准也是IEC617842标准的成员,且在产品开发和工程应用上取得了较好的基础,已开发出EPA变送器、执行器、现场控制器、数据采集器、远程分散控制站等产品,基于EPA的分布式网络控制系统也已在化工厂得到成功的应用。
结语
本文所介绍的3种实时以太网的解决方案是目前市场上应用较广和关注度较高的新型实时以太网方案。它们都在自己的方案中引入独特的技术,来解决标准以太网用于工控领域不能满足实时性要求的问题,打破以太网应用于控制系统现场级的瓶颈。在工业现场级通信中,以前的现场级标准一直没能统一,希望在未来实时以太网技术能够向统一的、更深的方向发展。