功率型LED的热特性直接影响到LED的工作温度、发光效率、发光波长、使用寿命等,现有的Si衬底的功率型GaN基LED芯片设计采用了垂直结构来提高芯片的取光效率,改善了芯片的热特性,同时通过增大芯片面积,加大工作电流来提高器件的光电转换效率,从而获得较高的光通量,也因此给功率型LED的封装设计、制造技术带来新的课题。功率LED封装重点是采用有效的散热与不劣化的封装材料解决光衰问题。为达到封装技术要求,在大量的试验和探索中,分析解决相关技术问题,采用的关键技术和创新性有以下几点。
(1)通过设计新型陶瓷封装结构,减少了全反射,使器件获得高取光效率和合适的光学空间分布。
(2)采用电热隔离封装结构和优化的热沉设计,以适合薄膜芯片的封装要求。
(3)采用高导热系数的金属支架,选用导热导电胶粘结芯片,获得低热阻的良好散热通道,使产品光衰 ≤5%(1 000 h)。
(4)采用高效、高精度的荧光胶配比及喷涂工艺,保证了产品光色参数可控和一致性。
(5)多层复合封装,降低了封装应力,实施SSB键合工艺和多段固化制程,提高了产品的可靠性。
(6)装配保护二极管,使产品ESD静电防护提高到8 000 V。
3 产品测试结果
3.1 Si衬底LED芯片
通过优化Si衬底表面的处理和缓冲层结构,成功生长出可用于大功率芯片的外延材料。采用Pt电极作为反射镜,成功实现大功率芯片的薄膜转移。采用银作为反射镜,大大提高了反射效率,通过改进反射镜的设计并引入粗化技术,提高了光输出功率。改进了Ag反射镜蒸镀前p型GaN表面的清洗工艺和晶片焊接工艺,改善了银反射镜的欧姆接触,量子阱前引入缓冲结构,提高了芯片发光效率,优化量子阱/垒界面生长工艺,发光效率进一步提高,通过改进焊接技术,减少了衬底转移过程中芯片裂纹问题,芯片制备的良率大幅度提高,且可靠性获得改善。通过上述多项技术的应用和改进,成功制备出尺寸1 mm×1 mm,350 mA下光输出功率大于380 mW的蓝色发光芯片,发光波长451 nm,工作电压3.2 V,完成课题规定的指标。表1为芯片光电性能参数测试结果。
注:测试条件为350 mA直流,Ta=25℃恒温。
3.2 Si衬底LED封装
根据LED的光学结构及芯片、封装材料的性能,建立了光学设计模型和软件仿真手段,优化了封装的光学结构设计。通过封装工艺技术改进,减少了光的全反射,提高了产品的取光效率。改进导电胶的点胶工艺方式,并对装片设备工装结构与精度进行了改进,采用电热隔离封装结构和优化的热沉设计,降低了器件热阻,提高了产品散热性能。采用等离子清洗工艺,改善了LED封装界面结合及可靠性。针对照明应用对光源的光色特性的不同要求,研究暖白、日光白、冷白光LED颜色的影响因素:芯片参数、荧光粉性能、配方、用量,并通过改进荧光胶涂覆工艺,提高了功率LED光色参数的控制能力,生产出与照明色域规范对档的产品。蓝光和白光LED封装测试结果见表2。表中:φ为光通量;K为光效;P为光功率;R为热阻;μ为光衰;I为饱和电流。
4 结语
Si衬底的GaN基LED制造技术是国际上第三条LED制造技术路线,是LED三大原创技术之一,与前两条技术路线相比,具有四大优势:第一,具有原创技术产权,产品可销往国际市场,不受国际专利限制。第二,具有优良的性能,产品抗静电性能好,寿命长,可承受的电流密度高。第三,器件封装工艺简单,芯片为上下电极,单引线垂直结构,在器件封装时只需单电极引线,简化了封装工艺,节约了封装成本。第四,由于Si衬底比前两种技术路线使用的蓝宝石和SIC价格便宜得多,而且将来生产效率更高,因此成本低廉。