数据与控制信息内容放在LabVIEW事件框图中,当用户单击前面板上的控制按钮时,相应的信息被发送,这样就避免了系统无休止地查询,节约了系统资源。下面的循环框完成读SRAM数据接收、分离IQ信号、频谱分析与显示等,当用户使得存储文件路径不为空时,可以将此时数据显示控件上的数据保存下来;而当回放文件路径不为空时,用户可以回放之前保存的历史数据。频谱显示控件有线性与对数显示两种格式,它受前面板上的一个系统复选框的控制。
4 设计结果验证
采用了3组实验来验证设计的正确性。实验条件:现场数据采集系统IP地址192.168.1.230,远程主机IP地址192.168.1.1,二者位于同一个局域网内。系统工作主频50 MHz,AD6620滤波器为低通滤波器,通带截止频率10 kHz,阻带截止频率15 kHz,通带内衰减0 dB,阻带衰减-60 dB,三级滤波器的抽取系数分别为10,25,2。
第1组实验的输入信号为单频信号,频率1.005 MHz,幅度250 mV,AD6620中NCO频率字设定为1 MHz。实验恢复的I路信号及其频谱分析见图6(a)。从实验结果来看,系统采集数据频率准确,较好地恢复了信号。第2组实验的输入信号为调幅信号,载波频率1 MHz,幅度250 mV,单音调制信号频率为3 kHz,调制深度30%。AD6620中NCO频率字设定为1 MHz。实验恢复的信号与频谱分析见图6(b)。这时从频谱图上可以清晰地看出差频之后,在零频周围300 Hz处有1根清晰的谱线。第3组实验的输入信号为单频信号,频率1.018 MHz,幅度250 mV,AD6620中NCO频率字设定为1 MHz。实验恢复的I路信号与频谱分析见图6(c)。此时由于信号处于滤波器通带之外,衰减很大,不能恢复信号。I路信号显示图中类似于“毛刺”的信号是由于电路底噪声在AD6620中运算所产生。综合3组实验的结果,本次设计较好地完成了设计任务。
5 结论
数据采集与网络远程传输系统是一个高集成,特别讲究软硬件间相互配合的综合系统,强调的是协调、稳定、高速、精准地完成各项数据采样工作。本设计中,在合理设计硬件的基础上,分别对FPGA,ARM以及远程主机上的服务器程序精心设计,解决了以往系统在大量数据采集、传输、储存、读写和处理时的速度以及灵活性问题。利用LabVIEW功能强大、简单易用,设计灵活的图形化编程语言,很容易地实现了对远程数据采集终端的配置与控制。