·上一文章:基于可配置处理器的嵌入式系统ESL设计需求
·下一文章:一种支持I/O的核外中断执行算法
通过铁轨的人总数为114人左右,计算机成功识别出的越轨行为有99人、计算机没有识别出的越轨行为有15人,本身无越轨行为但被计算机识别出的有9人。监控结果的成功率=(99÷114)×100%=86.8%;监控结果的漏报率=(15÷114)×100%=13.2%;监控结果的误报率=(9÷114)×100%=7.9%。
4 一种目标识别算法
铁路上运动目标主要分为:行人、车辆、小动物和其他。
在对目标进行识别前先要对危险情况存在时灰度图图像自动保存的结果进行必要的图像处理,目的是为后续的目标识别奠定基础,使经过处理后的图像更加方便地应用于目标识别。在这里图像预处理主要包括增强图像对比度、中值滤波和平滑处理等。目标识别算法的流程图如图5所示。
根据运动目标的分类可知,车辆的周长是最长的,所以首先直接判断图像中运动目标的周长,如果大于某一设定好的阈值,则可轻易判断出视场中目标属于车辆。余下的目标中,行人比小动物的纵横轴比值大,设定纵横轴比阈值,据此可以判断出目标属于行人。最后将设定一个面积阈值,面积大于此阈值则可判断目标属于小动物,否则目标属于其他一些环境的干扰。
5 结 语
本文首先对拍摄到的视频进行背景提取,根据提取到的背景经过一系列的图像处理最终对视场中危险区域进行划定。然后系统自动监测视频数据,自动以灰度图的形式保存危险情况存在时的图像,目的是为了后续的目标识别。最后根据铁路沿线上可能出现的运动目标,提出了一种运动目标识别算法。从监控结果可以看出,整个算法设计具有一定的可行性,可以作为基于图像处理的铁路沿线视频监控的一种算法,有一定的参考价值。