1.3 电子标签的分类
电子标签(tag)是射频识别系统真正的数据载体,tag具有智能读写和加密通讯的功能,它的基本构成是由IC芯片和一些外围元件组成。依据电子标签供电方式的不同,电子标签可以分为有源标签(active tag)和无源标签(passive tag),有源标签内装有电池,无源标签内没有装电池。按照能量供给方式,RFID系统分为有源与无源;按照工作频率,RFID系统有低频、中频、高频、超高频、微波射频等几种 。
2 基于RFID技术的动物食品安全可溯源系统
动物食品安全可溯源系统在动物食品安全控制中的应用,不仅包括对动物从出生到进入屠宰场整个饲养过程(饲养管理、兽医预防、疾病治疗、饲料使用)的记录与监控,还包括畜产品进入消费市场(超市等)后,消费者可通过每一头动物的唯一识别码,查询该动物产品的整个饲养、屠宰、加工和流通过程。
实施动物食品安全可溯源系统有利于畜产品质量的安全与健康保障。一方面它可以确保任一有质量安全隐患的被指定目标退出市场,便于对有害食品实行“召回制度”。同时也对畜产品生产企业的行为进行防范,防止企业有故意隐瞒的行为,督促企业及早采取措施,尽可能地将缺陷产品对民众安全造成的损害降到最低。另一方面也可以给消费者及相关机构提供信息,及时避免混乱的扩大。
动物食品安全可溯源系统构成包括硬件构成与软件构成两部分。
2.1 硬件构成
针对动物养殖过程的特点,本系统选用有源的电子标签,这样可以使识别距离达到50 m范围,在养殖区域内通过配套的读写器,即可实现数据的快速读取。无须动物集中到专用的识别通道,可减少动物因驱赶而出现的应激反应。动物食品安全可溯源系统硬件由计算机、电子标签、读写器等组成,本系统硬件结构图如图2 所示。
图2 动物食品安全可追溯系统硬件结构
Fig.2 Hardware framework of animal
food safety traceability system
在动物食品安全可溯源系统中,射频标签和读写器通过天线磁场进行数据的相互传输,根据养殖场的实际应用需要,其它传感器也可以应用到本系统。比如自动饲喂系统的称料传感器可以将动物进食数据传人计算机,本系统读写器与计算机之间的通信可采用RS232/485接口,或者USB接口,计算机中的数据经过调制解调之后,与网络数据中心之间的通信方式根据企业情况可以采用GSM,DDN,或者PSDN方式都能实现数据传递和链接功能。
2.2 软件构成
要确保高质量的食品安全信息交流,彻底实现在食品的生产、加工、流通各环节100% 的追踪及完全的透明度。再结合动物从出生、养殖、屠宰到销售的整个流程,动物食品安全可溯源系统软件的总体框图如图3所示。
图3 动物食品安全可溯源系统软件框图
Fig.3 Software framework of animal food safety traceability system
(1)养殖场网络数据中心
动物的饲养是整个生产过程中周期最长的一个环节。与家畜身份有关的档案有家畜身份标识编码、进出场日期,养殖户信息等;根据分析,养殖阶段主要对兽药、饲料、免疫情况进行记录和监测。具体结构图如图4所示。
图4 养殖场网络数据中心结构图
Fig.4 Framework of the network
data center in breeding farms