系统的运动微分方程为:
阻尼比ξ的大小可以用来表示振幅衰减的快慢,阻尼比越大,振幅的衰减越快;阻尼比越小,则超调量越大。由于液压缸弹簧刚度k值远大于气缸k值,故液压缸系统阻尼比小于气缸系统阻尼比,可以判断在同样阶跃激励作用下,液压系统振动更厉害。
在嵌入式智能电镦机上,选择了气液结合驱动。气液联合驱动是指以压缩空气为动力源,通过气液转换元件将气体动力转换成液体动力的驱动方式。在本系统中,采用气液联动驱动砧子块,镦粗缸采用直接气体动力驱动。图4是在镦粗缸换向时,压力传感器测得的压力振动曲线示波器截图。液压驱动式镦粗缸振动幅值比气体驱动大25倍,振荡次数超过10次。实验证明,气液结合驱动系统压力稳定性好。
4 模糊自整定PID控制策略
电镦控制系统属于非线性时滞系统,涉及温度、压力、电流等参数的控制。用常规的PID控制器,难以达到较好的效果。模糊PID是将模糊控制与经典PID控制相结合的控制器,适用毛非线性、数学模型不确定的系统。
模糊自整定PID是在PID算法的基础上,通过计算当前系统误差e和误差变化ec,利用模糊规则进行模糊推理,查询模糊矩阵表进行参数调整。模糊控制设计的核心问题是总结设计人员的技术知识和实际操作经验,建立合适的模糊规则表,得到针对kD、ki、kd三个参数分别整定的模糊控制表。kp、ki、kd的模糊规则表建立后,再应用模糊合成推理设计PID参数的模糊矩阵表,查出修正参数带入下式计算:
在线运行过程中,控制系统通过对模糊逻辑规则的结果处理、查表和运算,完成对PID参数在线自校正。
在电镦控制系统中,分别有电流、压力、速度三个控制参数;以压力为例来说明。在初始阶段,由于棒料加热温度没达到形变要求,形变较慢。在热镦阶段,温度已到达要求,形变较快。所以,可通过检测温度实时值,来控制压力输出。把经验所得的温度和压力对应表作为模糊集。温度作为控制器的输入量,经过模糊矢量化后输入给PID控制器,最终得到PID输出量后,转换位压力控制量输出给气压比例阀实现压力控制。系统框图如图5所示。
5 结语
嵌入式智能电镦机采用ARM7微处理器为核心的控制平台,实现了电镦加工过程的自动控制。基于μC/OS-II操作系统设计的控制软件,人机界面简单方便,操作人性化。选用模糊PID控制策略,克服了系统的非线性和时滞性问题,鲁棒性大大增强。本系统经某汽配厂电镦现场使用表明,提高了气门生产自动化程度,有助于提高工厂的经济效益。