2.2 电镦系统控制流程
电镦工艺是根据朔性力学和传热学原理,利用工件本身的电阻,通过控制加载在工件上的电流和压力,使工件通电发热,当工件被加热到塑性变形温度时逐渐被镦粗成型。在嵌入式智能电镦机上,还设计有自动上下料机械手,实现电镦过程的连续自动生产。设计中,将电镦控制过程分为:上料,预热,上料复位,热镦,上料准备,热镦结束,热镦复位,下料等过程。
在这些过程中,动作之间的协调配合不但可以提高生产效率,而且还可以提高加工质量。采用嵌入式实时操作系统,可以大大优化工作过程中各动作的协调配合。μC/OS-II是一种可剥夺内核的实时多任务操作系统,具有良好的实时性能和多任务功能,结构小巧、执行效率高、占用空间小。在μC/OS-Ⅱ操作系统上,将控制流程中的一些加工步骤并行触发,使加工流程更加紧凑高效,有助于提高电镦生产效率。
2.3 核心控制电路
核心控制电路是嵌入式硬件的最小系统,存储操作系统、应用软件及提供硬件运行平台。在核心控制系统中主要是采用ARM微处理器作为主控制器,电镦机的控制软件和工艺参数文件保存在2MB的NorFlash中,控制程序在8MB的SDRAM中执行。RS232通信接口用于PC机下载程序和反馈硬件平台的调试信息。JTAG是微处理器配置的调试接口,可以使用仿真器通过JTAG接口对硬件平台进行仿真调试;同时,JTAG接口还可以实现Nor Flash程序固化功能。微处理器芯片已经提供了LCD控制器,因此不需要外接控制器,使用方便。数据总线输出压力、速度、电压等数据信号量,要经过总线驱动器保证数据的传输无误。AD输入经电平转换后直接输入到处理器上。
2.4 基于μC/OS—II的控制系统设计
嵌入式智能电镦控制系统在ARM7内核的S3C4480微处理器上移植了μC/OS-II,并开发了电镦控制系统应用程序。整个控制系统分为6个任务:上料,下料,镦粗缸,砧子缸,变压器,人机界面。各任务优先级从高到低如下分配:砧子缸8,镦粗缸12,变压器14,上料16,下料20,人机界面24。任务间通过预先创建的信号量进行任务切换。为了保证控制位移的实时采集,位移传感器信号以中断方式输入。
人机界面在移植到S3C4480的μC/GUI基础上设计。由于S3C4480有LCD控制器,所以在移植μC/GUI时,只需要移植μC/GUI驱动层9个函数。
LCD_L0_Init(); 初始化显示屏并清屏;
LCD_L0_Rinit(); 重新初始化显示屏,不清屏;
LCD_L0_Off(); 关闭LCD;
LCD_L0_On(); 开启LCD;
LCD_L0_DrawBitmap();画位图;
LCD_L0_DrawHLine();绘水平线;
LCD_L0_DrawVLine();绘垂直线;
LCD_L0_FillRect(); 矩形填充框:
LCD_L0_XorPixel; 反转一个像素点:
移植完成以后,就可以直接在μC/GUI应用层上设计人机界面。通过其提供的窗口管理控件,为电镦控制系统设计了主界面、参数设置界面、调试界面等窗口。在各窗口下,根据功能设置的不同,分别创建了l~4个子窗口。重绘函数通过LCD触摸屏或者时钟信号激活,发送信号量后,由系统调度刷新LCD显示屏。人机界面简单方便,操作设计人性化。
3 电镦机控制特性分析
3.1 电镦常见缺陷
气门毛坯成型过程中,由于各方面的参数影响,会出现不同类型的废品,主要缺陷有:头部有裂纹、顶部出现折叠、成型歪斜不均匀。
当毛坯成形时棒料过热、变形量大,在附加拉应力的作用下产生轴向裂纹。折叠产生原因是始镦温度与终镦温度相差较大,金属聚集结合不好,有明显的分界线,形成台阶状的折叠。而成型歪斜是由于砧子块棒料接触电阻相差悬殊,造成两边电流不均匀,棒料过多地流向温度高的一侧,引起歪斜。
从上面分析可见,常见缺陷成因主要可以归结为:压力不稳定,电流不均匀,驱动系统有时滞性。
3.2 气液结合驱动
电镦机振动本身是复杂的非线性系统,无法获得精确的数值解,为建立电镦机的振动力学模型,在此做如下假设:
(1)将电镦机机身、工件、砧子缸看作刚性质量块;忽略电镦机连接及驱动部件之间的间隙对电镦机振动的影响。
(2)将电镦机机身及镦粗缸等效为线性弹簧。
(3)只考虑电镦机纵向方向的振动。
由工程振动理论知:振动系统受到激励发生的振动,是由有阻尼自由振动与稳态振动组成的。如图3所示为电镦机等效弹簧一质量系统简图,k为弹簧刚度,c为粘性阻尼系数,F为一阶跃激励,所谓阶跃激励就是受到常力F的突然作用,即F(t)=F。