首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 家电技术 > 维修教程知识 > 单片机栏
基于RBF神经网络的控制系统传感器故障诊断方法
来源:本站整理  作者:佚名  2009-08-05 13:31:53



引 言
    传感器是现行研究的压铸机实时检测与控制系统的关键部件,系统利用传感器对压铸机的各重要电控参数 (如:合型力、油压、压射速度、模具温度等)进行检测,并进行准确控制。这一过程中,各传感器输出信号的质量尤为重要,其优劣程度直接影响压铸机控制系统分析、处理数据的准确性,最终影响压铸件产品质量的优劣。由于大型压铸机生产环境较为恶劣,长期的高温、高压、高粉尘及来自周边器械的电磁干扰等因素的存在,不可避免地会造成传感器软硬故障的发生,有故障的传感器所发出的错误信号,会使整个压铸机控制系统分析、处理和控制功能紊乱,造成系统无法正常运行,带来无法估计的生产安全隐患及严重的后果。因此,对压铸机控制系统中传感器故障诊断方法的研究具有重要的意义。
    人工神经网络(神经网络)是传感器故障诊断的方法之一。神经网络是有大量人工神经元相互连接而构成的网络。它以分布的方式存储信息,利用网络拓扑结构和权值分布实现非线性的映射,并利用全局并行处理实现从输入空间到输出空间的非线性信息变换。对于特定问题适当建立神经网络诊断系统,可以从其输入数据(代表故障症状)直接推出输出数据(代表故障原因),从而实现非线性信息变换。层状结构的神经网络输入层、输出层及介于二者之间的隐含层构成。依据用于输入层到输出层之间计算的传递函数不同,提出一种基于径向基函数RBF神经网络的传感器故障诊断策略。

1 RBF神经网络的模型
    径向基函数神经网络(RBFNN)是一种新型神经网络,属于多层前馈网络,即前后相连的两层之间神经元相互连接,在各神经元之间没有反馈。RBFNN的三层结构与传统的BP网络结构相同,由输入层、隐含层和输出层构成,其结构见图1。其中,用隐含层和输出层的节点计算的功能节点称计算单元。

    RBF神经网络输入层、隐含层、输出层的节点数分别为n,m,p;设输人层的输入为x=(x1,x2,…,xj,…,xn),实际输出为Y=(y1, y2,…,yk,…,yp)。输入层节点不对输入向量做任何操作,直接传递到隐含层,实现从X→Fi(x)的非线性映射。隐含层节点由非负非线性高斯径向基函数构成,如式(1)所示。

  
式中:Fi(x)为第i个隐含层节点的输出;x为n维输入向量;ci为第i个基函数的中心,与x具有相同维数的向量;σi为第i个感知的变量,它决定了该基函数围绕中心点的宽度;m为感知单元的个数(隐含层节点数)。|| x-ci||为向量x-ci的范数,通常表示x与ci之间的距离;Fi(x)在ci处有一个惟一的最大值,随着|| x-ci||的增大,Fi(x)迅速衰减到零。对于给定的输入,只有一小部分靠近x的中心被激活。隐含层到输出层采用从Fi(x)→yk的线性映射,输出层第k个神经元网络输出见式(2):

  
式中:yk为输出层第k个神经元的输出;m为隐层节点数;p为输出层节点数;ωik为隐层第i个神经元与输出层第k个神经元的连接权值。
    RBF网络的权值算法是单层进行的。它的工作原理采用聚类功能,由训练得到输入数据的聚类中心,通过δ值调节基函数的灵敏度,也就是RBF曲线的宽度。虽然网络结构看上去是全连接的,实际工作时网络是局部工作的,即对输人的一组数据,网络只有一个神经元被激活,其他神经元被激活的程度可忽略。所以RBF网络是一个局部逼近网络,这使得它的训练速度要比BP网络快2~3个数量级。当确定了RBF网络的聚类中心ci、权值ωik以后,就可求出给定某一输入时,网络对应的输出值。

2 算法学习
    在此采用模糊K均值聚类算法来确定各基函数的中心及相应的方差,而网络权值的确用局部梯度下降法来修正,算法如下:
2.1 利用模糊K均值聚类算法确定基函数中心ci
    (1)随即选择h个样本作为ci(i=1,2,…,h)的初值。其他样本与中心ci欧氏距离远近归人没一类,从而形成h个子类ai(i=1,2,…,h);
si
    (2)重新计算各子类中心ci的值,其中,xk∈ai;si为子集ai的样本数,同时计算每个样本属于每个中心的隶属度为:


    (3)确定ci是否在容许的误差范围内,若是则结束,不是则根据样本的隶属度调整子类个数,转到(2)继续。

[1] [2] [3] [4]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)

推荐阅读

图文阅读

热门阅读

Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:162,519.50000 毫秒