3.4 训练数据的获取
首先,采用如下算式解算a(t)
弧度,|Uz1|=28、29、30、31 m/s,|Vx1|=319、320、321、322 m/s,ε1=0.3、0.4、0.5、0.6弧度;通过调节参数cx、cy,得到64组圆概率误差CEP∈(4,5)m的训练数据,并对其加入一定程度的扰动误差。
3.5 检验
设两种投弹初始条件:
(a)|Uz1|=30 m/s,|Vx1|=321 m/s,ε1=0.5弧度(经训练的投弹初始条件,即教师知识);
(b)|Uz1|=30.8 m/s,|Vx1|=319.7 m/s,ε1=0.38弧度(未经训练的投弹初始条件,即非教师知识)。
用含有扰动误差的训练数据,对基于ANFIS的制导炸弹智能控制系统和基于NSFIS的制导炸弹智能控制系统分别进行训练,并分别在(a)和(b)条件下进行投弹控制试验。设得到两种智能控制系统的控制结果比较如表1所示(表中数据为CEP,单位:m)。
从表1可以看出,无论在(a)还是(b)条件下,基于NSFIS的智能控制系统控制的命中精度都很高,而基于ANFIS的智能控制系统命中精度很低。这是因为ANFIS不具有抗噪声能力,在训练的过程中,将扰动也作为经验进行了学习,因此其推理误差必然较大,控制不准确。而NSFIS具有较强的抗噪声能力,在学习过程中能够去除扰动影响,因此其控制精度高。现实中,扰动是不可避免的,所以基于NSFIS的制导炸弹智能控制系统具有更高的工程应用价值。
4 结束语
针对基于ANFIS的制导炸弹智能控制系统不具有抗噪声能力的缺点,文中以非单点模糊推理系统为核心设计了一种新的制导炸弹智能控制系统。利用了非单点模糊推理系统的前置滤波特性,并提出用梯度下降算法和遗传算法构成的混合并行学习算法调整系统内部参数,解决了系统内部参数动态自适应调整的问题。试验结果证明,在训练数据含有噪声的情况下,基于NSFIS的制导炸弹智能控制系统能够自动滤除噪声,实现高精度控制。这对制导炸弹智能控制系统的工程实现具有一定的意义。