首 页文档资料下载资料维修视频包年699元
请登录  |  免费注册
当前位置:精通维修下载 > 文档资料 > 电子技术 > 通信与网络
功率LDM0 S中的场极板设计
来源:本站整理  作者:佚名  2010-07-09 08:53:00




    下面将详细讨论多晶栅场极板的长度和位置对漂移区表面电场和电势的影响。图4为不同场板长度下漂移区表面电场分布。由图可见,随着场板长度的增加,场板下的电场峰值先减小后增加,这是因为场板长度较短时,场板末端与场氧鸟嘴区以及p阱/n-漂移区结距离较近,等势线在此区域分布较密,三者相互作用可使此处表面电场增强,器件容易在此处发生雪崩击穿;随着场板长度增加,场板末端和漏极距离缩短,进而调制漏电极附近的电场峰值,使得电场在整个漂移区内分布更加均匀,提高器件的耐压能力。但是场板长度过长时,反而会增强漏端电场,因此,对于LDMOS,场板长度有一个最优值。


    图5为不同场板位置时漂移区表面电场分布,此时场板长度取2.5μm。由图知,随着场板向漏端靠近,场板下的电场峰值逐渐增加,这是场板所加电压与漏压共同作用所致。这一点对提高器件的耐压能力很有帮助,也是优化设计场极板位置的主要依据。当场极板远离栅极时,出现沟道末端电场上升,漏端电场下降的趋势。考虑到漏端电场峰值更大,此处是器件的击穿点,因此设计时主要考虑降低漏端电场峰值。因此,针对文中的LDMOS器件结构,场板位置应该设计在靠近漏极处。从图4和图5可见最大电场峰值位于漏端,因此一旦发生热载流子效应,这里电离积分很大,是热电子产生的主要区域。与栅氧化层处的热载流子效应不同,漏端热载流子进入场氧化层形成的界面电荷距离沟道很远,因此不会改变器件的阈值电压,但是这部分电荷会影响到漂移区电流密度的分布,进而改变器件的驱动电流和跨导,对LDMOS的可靠性产生影响。


    图6为场板加不同电压时的漂移区表面电场分布图。此时场板长度取2.5μm,场板距离栅极0.5μm。从图中可以看出,随着场板所加电压的增大,场板靠近栅极的一端电场峰值增大,而靠近漏极一端的电场峰值减小,即整个场板区的电势降落随场板电压的增大而增大。而其他区域的电场随场板电压变化不大。因此对于LDMOS场板电压的控制也是器件设计的一个重要因素。

3 结论
    本文根据LDMOS器件漂移区电场分布和电势分布的二维解析模型,通过分段求解泊松方程得出了器件漂移区表面电势分布和电场分布的解析表达式,并根据所得的表达式分析了LDMOS一阶场板的长度和位置以及场板所加电压对于其漂移区表面电势和电场分布的影响。计算结果表明,LDMOS的场板各参数对于器件的性能有很大影响。因此,本文的分析模型对于实际LDMOS器件的设计有着重要的指导意义。

上一页  [1] [2] [3]  下一页

关键词:

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分)
Copyright © 2007-2017 down.gzweix.Com. All Rights Reserved .
页面执行时间:89,929.69000 毫秒