以往在空空导弹遥测中多采用PCM/FM体制,发射机为调频方式,多工作于锁相调频方式。某低空炮弹遥测系统为提高抗地面多径干扰的能力,采用了直序扩频调制,需要使用四相调制(QPSK)发射机。该发射机与信号采集电路采用数字接口,利用双路差分输出数/模转换电路AD9761产生基带I/Q信号,利用ADF4360-1锁相环产生差分本振信号,利用AD8346进行差分正交调制,采用差分电路提高了系统性能,降低了本振泄漏,采用射频放大芯片HMC478和HMC457将信号放大到29 dBm。经测试功率输出端的信号调制矢量误差(EVM)为5%。该发射机已经参与遥测系统试验,结果证明工作稳定。
1 发射机常用调制方式
发射机调制方式常用中频调制和射频直接调制2种方式。中频调制是在较低的中频上进行调制后,再通过混频等频率变换,把该中频信号搬移到需要的发射载波频率上去。对射频的直接调制是在需要发射的射频频率上进行的,直接把基带信号调制到射频载波频率上,没有变频环节。两种调制方式各有优缺点,主要对比见表1。
由于中频调制一般是在较低的频率上进行的,调制器的选择范围大,易于实现,并且由于变频环节的存在,对调制的直流分量和载波泄露都有较好的抑制。但因采用了变频环节,所以相对直接射频调制需要增加混频器、滤波器和一级本振,提高了系统复杂度,增加了系统成本,可靠性也有所降低。同时由于中频频率较低,难以实现较高的调制带宽。
射频直接调制的方法具有系统简单可靠,调制带宽宽,器件少,成本低等优点,比较适合高数据率、小体积等场合的应用需要。但存在适应载波频率受限,载波泄露较大,对本振要求要较高等问题,在对载波泄漏、带外衰减的要求严格时难以满足指标要求。
2 发射机设计
本系统工作在遥测专用的S波段,一般情况下用户数有限,对于载波泄漏和带外衰减要求不太严格,而本系统关键问题是遥测舱可用空间小,需要抗很强的炮弹发射过载,因此本方案选用射频直接调制方式。本发射机本振和I,Q信号都采用差分输出方式,利用差分接口的调制器实现调制,较好地抑制了电路中的共模干扰。图1为发射机原理框图。基带信号经滤波对射频本振进行调制,而后经射频放大、低通滤波器除谐波输出。
2.1 数字接口设计
因前端数字电路可直接输出差分的I,Q数字信号,因此设计初期在发射机中未设计数字接口电路,直接由前端数字电路输出的差分I,Q信号对射频本振进行正交调制,但经实际试验,调制特性太差,主要原因在于数字电路输出与调制器难以匹配。因此对其进行了改进,在发射机内加入了由AD9761双路差分输出DAC构成的接口电路。该电路具有40 MSPS转换速率(单路40 MSPS)、10 bit DAC、双路差分转换输出,并
且具有2倍采样插值滤波功能。该电路输出为电流模式,能够实现与调制器的良好匹配。
2.2 基带滤波电路设计
符号速率为1 MHz的随机序列频谱如图2所示。对信号进行滤波可以对边带信号进行抑制,减小带宽的占用。如果采用模拟滤波则需要的滤波器阶数很高,这会增大滤波器的体积,降低环境的稳定性。采用数字滤波技术可以很方便地实现高阶滤波,对近端带外信号进行抑制,降低对模拟滤波器的要求。本方案采用的数字接口电路是具有2倍采样43阶FIR的低通插值滤波电路,相当于增加了滤波器,阻带抑制达到62 dB,因此调制输出的信号频谱特性得到了很大改善,通带外的近端频谱得到了很大抑制,对于高于转换时钟的频率,其滤波特性的周期性折叠。图3为经过插值数字滤波后的频谱与原频谱的对比,数字插值滤波电路的阻带抑制使模拟滤波器有较宽的过渡带,电路要求得以降低。
为简化电路,本方案采用了较简单的RC滤波电路,旁瓣抑制达到40 dB。