蜂窝发射模块对手机内的任何元件来说都将产生最大的辐射功率,从而可能诱发EMI和RFI。类似这样的问题可以采用RF屏蔽技术来降低与EMI及射频干扰(RFI)相关的辐射,并可将对外部磁场的敏感度降至最低。那么,什么样的屏蔽设计方法具有最佳效率呢?这个由三部分组成的系列文章围绕当今蜂窝发射模块来讨论有效的RF屏蔽方法。
近年来,手机在形态、功能、性能和成本方面都发生了巨大变化。不断演进的新技术催生出更小、更高能效和高度集成的半导体器件,从而不断孕育出集成度更高的便携(移动)手机产品。运营商在提供额外的诸如短信服务(SMS)、多媒体(MMS)和GPS等服务,而制造商为移动蜂窝手机增加了诸如FM射频等辅助无线功能、以及MP3播放机和数码照相机等其它功能。实现全部这些特性所要求的外形和体积对手机设计师和硬件工程师提出了相当挑战。
因此,工作在印刷线路板(PCB)级的手机设计师遭遇到诸如集成器件间的耦合、线耦合和交叉干扰等不期望发生的核心问题。而所有这些问题又导致了更多的设计返工、手机外形间缺少通用性以及被延长的设计周期,而上述这些又都增加了手机开发成本。在当今竞争激烈的市场压力条件下,这些因素对移动手机制造商和研制它们的设计师的成功来说,发挥着关键作用。
在手机设计早期就确认可有助于解决这些核心问题的一个领域是广为采用的屏蔽。屏蔽减小了电磁干扰(EMI)和射频干扰(RFI)、极大削弱了不希望的辐射、缓解了它引发的灾难。目前,屏蔽与RF频率如影随形,因全部RF通信标准都有某种要求把不期望辐射最小化的规定。
屏蔽的效能由它在一个宽的频谱范围内,能多大程度上衰减辐射信号来表征。例如,一个带活动盖的金属“容器”可构成一个屏蔽,或容器本身可直接固焊在PCB上。采用盖结构对调节很有用,所以常被用在电视调谐器等应用,但该屏蔽的效能高度依赖盖和容器间的电气连接。它以RF屏蔽所根据的基本概念为基础:时变电磁场(EM)会在导体内环绕场线感应出电流。所以,完美导体内的感应电流会产生一个与诱发场相反的EM场,从而使导体内的场线抵消。因此,屏蔽上过多的孔洞、槽沟和开口会降低屏蔽效能,这是因感应电流只能在导体上存在自由电子的部位流动。导体(容器)上的开口意味着该处没有自由电子,它会导致电流寻找沿着开口处的其它途径流动,从而使感应场无法完全抵消诱发场。表皮深度是另一个重要因素,它由EM波穿透传导膜的能力决定。特别是当低频具有特别重要性时,为有效屏蔽辐射的RF信号,会需要一个更厚的膜。
本讨论中,与屏蔽相关的重点将围绕当今手机设计中一个通用的RF半导体元件——蜂窝发射模块(TxM)展开。简言之,TxM是由在一种类似PCB的基板上固放上裸片和无源器件构成的。然后将该组件进行包注模(overmolded)处理,之后它就可被固焊在手机PCB上。因它对手机内的任何元件来说都产生最大的辐射功率,进而极有可能诱发EMI和RFI,所以该例子特别有用。另外,整体上,TxM与矩形波导的尺度类似,根据Pozar[1],矩形波导的截至频率为:
其中,“m”和“n”代表模式,“μ”和“e”分别代表渗透率和介电常数,等式1表示:若尺寸“a”大于“b”,则主导模式是TE10。因此,等式1重写为:
其中:“c”是光速;“E1”代表相对介电常数;“μr”是相对渗透率;“a”是开口。
等式2指出,如我们预期的,截至频率随开口“a”尺寸的缩小而增加。当屏蔽上有若干开口时,方程式会变得更复杂,从而进一步强调了完全没有开口的重要性。