引言
在数字通信系统中,接收信噪功率谱密度比(Pr/N0)、接收位能量与噪声功率谱密度比(Eb/N0),以及其它类似的信噪比(SNR)常常被不太准确地定义在接收电路的输入点处。这种不精确性来自于一些常见的不确定性,包括应该在哪里定义和测量这些SNR,以及对于接收系统中的Eb/N0而言,恰当而准确的参考点应该位于何处等问题。这种不确定性必然会导致误差,它与本地SNR测量对应于一个系统SNR模型这一错误假设(实际情况并不总是如此)混杂在一起。此外,接收电路设计工程师常常在接收电路内部为SNR(以及系统温度)模型选择一个物理位置,它不同于系统设计工程师通常用作参考的位置。为了减小潜在误差,设计工程师需要明确地区分测量和模型,而且必须完整地理解对这些接收电路SNR参数的模拟是如何发展演变的。此外,通过认识通信系统中各方面的差异(应该在哪里测量SNR和系统温度),可以避免在系统分析中犯错误。
电路元件模型
一个数字通信接收电路系统(图1)包括一个接收天线,一条损耗线,一个主要由放大器、相关器或匹配滤波器和采样器组成的接收电路,以及一个执行离散判决的检测器功能块。为简化起见,接收电路功能块中的下变频和均衡等功能没有显示出来,整个接收电路功能块将被当作单个电路元件来看待。假设损坏接收信号的热噪声具有平坦的功率谱密度,其幅度为N0 = kT (W/Hz),其中k为玻耳兹曼常数,T为开尔文单位的温度值。
图1接收电路系统
图2噪声温度输入源
有效噪声温度的概念是一个简单的模型,它允许设计工程师将电路元件的内部噪声表示为理想电路的噪声温度输入源。图2a是将这一概念应用于放大器和衰减器的情况,并总结了两个关系方程:
TR=(F-1)290 Kelvin (1)
TL=(L-1)290 Kelvin (2)
其中TR和TL分别为放大器(接收电路)和衰减器(损耗线)的有效温度,F和L分别代表噪声谱和损耗因子。图2b是应用于一对级联电路元件(一条损耗线加上一个放大器)的模型,其中损耗线的增益可表示为1/L。
因此,复合噪声温度Tcomp可表示为:
Tcomp=TL + LTR (3)
多测量点模式
在接收电路中的某处进行SNR测量时,T代表该处的本地噪声温度(Tlocal)。如图3所示,Tlocal(其效果可在选择的某个观察点或参考点进行测量)代表源噪声功率。负载的影响忽略不计,因为计算SNR时它将被抵消。
图3 多点接收系统