1 探测接收前端方案设计与仿真
根据后端数字系统要求,需要把来袭的激光信号通过光电探测二极管变换成数字系统能处理的数字脉冲。由于光电二极管在激光信号的作用下产生的是一个窄脉冲电流,选用的光敏二极管最小输出电流为10 nA的脉冲电流,脉冲宽度为10 ns,按照有效频率计算放大电路的频带需大于400 MHz,为满足这一要求采用500.MHz的大带宽的运算放大器担任放大作用,并完成电流与电压的转换,得到脉冲电压。由于在来袭信号较低时或过大时,脉冲信号都达不到数字信号需要的电压,需要进行的整形与放大,以期达到数字系统常规电压的标准(高电压5~3.3 V,低电压为2.1~0 V),系统中采用把接收信号一直放大到使其后级放大电路饱和的方法来实现数字电压整形。总体方案如图1所示,放大器后波形要求如图中每级后的图示;最后把光电管探测电流变成脉冲电压形式,脉冲宽度代表作用激光能量的大小。
由于系统最小信号带宽很宽、脉冲电流微弱,对电路中电容元件敏感,为了得到具体的参数值,在ADS(Ad-vatreed Design System)软件中采用瞬态仿真方法进行系统仿真,图2为仿真电路拓扑图。根据系统最小检测要求以及光电管原理特征,在ADS软件中用脉冲电流源、电阻与电容并联模型代替实际的光电管在激光作用下产生脉冲电流的模型,如图3中所示的电路参数设置是采用最小的来袭激光能量1μW下光电管输出的电流为10nA,宽度为10 ns的电流脉冲,对应的端口电流仿真波形如图4所示。系统中放大器采用低噪声高增益带宽积(500 MHz)的运放实现放大,仿真了在来袭激光不同光能量作用下的系统输出波形,不同来袭激光的作用在仿真中采用激光探头光电管的模型中电流脉冲大小,电流脉冲宽度的变化来表示。结果如图5~图7所示。从结果可以看出该放大方式能得到数字脉冲,输出的脉冲宽度与来袭激光的功率成正比。系统不仅能判断出有无来袭激光,还可以计算出来袭激光能量大小。