本文讨论一种将单端信号(通常来自经过缓冲的解调电路)转换成差分信号(以便馈入高中频ADC)的电路。这些电路使用一个宽带变压器、匹配电阻及滤波电容来完成此任务。还讨论了变压器的最优匹配方法,以便保持高速ADC的高动态范围,同时又使增益突起和带宽降低效应减至最小。
利用200MHz变压器实现单端至差分转换
我们选择MAX1449来示例及分析两种可能的输入配置。图1给出一种采用宽带变压器的典型交流耦合单端至差分转换设计方案,其中变压器采用Mini-Circuits公司的T1-IT-KK81(200MHz),采用50W一次侧匹配及25W/22pF滤波网络。在此结构中,来自50W阻抗信号源的单端信号通过变压器后被转换成差分信号。一次侧的50W匹配使信号源和变压器之间有良好的匹配。但这同时也意味着变压器一次侧和二次侧之间的失配。从一次侧看过去是一个组合的25W阻抗,而二次侧上却是一个很大的失配阻抗,即20kW的ADC输入电阻并联22pF电容。这将影响输入网络的频率响应,并将最终影响转换器的频率响应。变压器的标称漏感在25nH至100nH范围内。再加上22pF的输入滤波电容,将产生一个位于110MHz至215MHz之间的干扰谐振频率:
在这个频率附近,将产生一个增益突起。
利用800MHz变压器实现单端至差分转换
图2给出一种与图1类似的交流耦合配置,但这次是采用性能更好的宽带变压器,例如Mini-Circuits公司的ADT1-1WT(800MHz),采用一次侧匹配和25W/10pF滤波网络。尽管这种变压器具有75W的阻抗,但其较低的泄漏电感可获得更好的频率响应,-1dB频率高达400MHz,与之相比T1-IT-KK81则只有50MHz。
变压器—200MHz与800MHz性能对比
图3给出两种匹配方案、滤波网络元件与变压器的测试结果。从图中的两条曲线可看出频响特性的显著改善。T1-IT-KK81型变压器在90MHz至110MHz之间明显地出现了一个大约0.5dB的增益突起,而ADT1-1WT型变压器的曲线在高达300MHz的频率范围内平坦度保持在0.1dB以内。这种条件(即ADT1-1WT型变压器、50W一次侧匹配以及在INP与INN上接10pF输入滤波电容)下的动态性能仍能在fIN=50MHz频率上获得58.4dB的SNR。虽然图3中只给出80MHz至260MHz测试频率下的情况(仅对ADT1-1WT型变压器),但实验室测试结果证明,即使在输入频率远超出第8奈奎斯特区时,其增益平坦度仍能保持在0.1dB以内。