2 定义
定义2.1一个无重叠生成文法(简称0FG)是一个系统式中:N和T分别是非终止符和终止符集合,S是启始符,它是N的一个元素,$是限界符,它不属于上面任何一个集合,P是重写规则的集合,其中任一重写规则具有:
这里α,β∈(N∪T),α≠β,A∈N,且每个规则满足下列条件:
重写规则的左部至少有一个非终结符,其右部不能是$5,S$,$S$或S。
对任意两个重写规则r1=α1→β1和r2=α2→β2,应满足:①不存在δ,β′1,β'2∈(N∪T∪{$})+使得β1=β′1δ和β2=δβ′2,即β1和β2不能有任何相互重叠的部分;②如果存在γ,γ′∈(N∪T∪{$}){$})*使β1=γβ2γ',则r1=r2。
令η∈{N∪T)+,α→β是P中的任意一个规则,如果存在γ,δ∈(N∪T∪{$})*,使得η=γaδ,则称规则α→β可应用于η。通过对η应用规则α→β,可以得到ζ=γβδ,对此,称在G中ζ可由应用规则α→β从η直接推导而得,记为,或简记为的自反传递闭包记为如果存在ξ1,ξ2,…,ξn-1使得,则记为在G为默认的情况下,分别简记为
令η∈(N∪T)+,若为G中的一个推导句型,称η为G中的一个句型。对于任一文法G,其生成的语言定义为:
定义2.2一个确定性图灵机(简称DTM)是一个系统M:
式中:Q是状态集合,∑是输入符号的集合,Г带符号集合,是一个移动函数,a0∈Г是一个空白符号,q0是初始状态,qf是终止状态。
假设M具有一个向右无限的符号带,M总是从符号带的最左端位置以初始状态开始移动读写头,且读写头右侧永不存在不连续字符带(图林机在任何时候都不向连续字符带的中间写空白字符,只能在最右端写空白字符)。这样的假设并不影响M的通用性。
定义2.3设C是一类文法系统或一类图灵机,L[C]表示该类系统所生成或接受的语言的集合,称为C的语言类,即:
L[C]={L(G)|G∈C}
3 图灵通用性
引理3.1 OFG所生产的语言类是DTM接受的语言类的子集,即
证明:很显然,对任何一个0FG文法G均可以容易地构造一个等价的Cllomsky O型文法G′,故O型文法]。而三L[Cllomsky 0型文法]=L[DMT]。或简单地说,L[OFG]是递归可枚举集的子集。
引理3.2 DTM接受的语言类是0FG所生产的语言类的子集,即:
证明:可以用0FG来模拟任一个确定的图灵机的逆过程。不失一般性,假设图灵机具有右无穷长带,且在任何状态下具有连续的字符序列,在任何时候都不向字符带中段上写空白字符。