从图5(a)中可以看出,随着级联次数的增加,A(f0)在逐渐变大,BW0.7也在逐渐变窄,说明其对频率的选择性越来越好,对干扰信号的抑制能力也越来越强。
除了级联能增强带通滤波器对频率的选择能力以外,另外,改变品质因素Q值的大小也能达到此效果。众所周知,品质因素Q如果小于0,电路就会自激振荡,无法正常工作。从图2可以看出,Q值越高,则通频带越窄,也就是说滤波器对频率的选择性就越好,对干扰信号的抑制能力也就越强,但并不是Q值越大,电路就越好越稳定。为此,也做了如下实验,即根据式(2)~式(4),设计出了品质因素Q分别为1.55、2.99、7.87这3种中心频率(理论值)一样的二阶带通滤波器,并分别绘制出了它们的电压/V~频率/kHz图,如图5(b)所示。
从图5(b)中可以发现,品质因素Q值越大,其A(f0)在逐渐变大,BW0.7也在逐渐变窄,但是随着Q值的增加,其中心频率也在向低频端倾斜,并且低频端上升的坡度较陡,相对于低频端,高频端下降的幅度较缓。根据前面的分析也不难看出,Q值如果无限的大,会造成电路的自激振荡,无法正常工作。为了确定这点,也分别测试了Q值为2.99和7.87两种带通滤波器在无信号输入情况下输出端的情况,如图6(a),图6(b)所示。从两个示波器的图可以看出,Q值越大,其自激的程度也就越大,当Q值达到一定数值时,自激程度与输入信号的强度相当或者比输入信号还要强,就会影响整个电路的正常工作。
2.3 数值的选取
值得注意的是,在设计电路时,首先要根据式(3)确定带通滤波器的中心频率,因为二阶带通滤波器中的元器件比较多,相互干系也比较烦琐。首先确定中心频率对以后的数值计算会有很大的简化。为了方便,也可以取R1=R3=R,C1=C2=C,Ra=Rb=R’,如果想设计一个带放大的带通滤波器,可以根据式(2)或者根据有源带通滤波器的同相放大倍数在确定了其它数值后适当改变Ra和Rb的值得到你想要的放大倍数。这里建议不要随意大幅度改变Ra和Rb的值,因为根据式(4)可以看出在确定了其他数值后改变Ra和Rb会影响Q值,而Q值的大小直接影响到电路的工作状态是否稳定。此外,Q值对元器件数值的大小比较敏感,所以在选择元器件时尽量选取精度较高的器件。
3 结束语
虽然由集成运放和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻,集成运放的开环电压增益和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用等优点。但是因其品质因素Q值无法做的很大,也就导致其通频带宽度无法做的很窄,造成了该滤波器对频率的选择性不是很好,对干扰信号的抑制能力也不是很强,所以在选择设计滤波器方案的同时,要注意结合实际情况,在满足实际要求的状态下合理选用滤波器的设计方案。