1 滤波器的结构及分类
以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。
滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
文中结合实例,介绍了设计一个工作在低频段的二阶有源模拟带通滤波器应该注意的一些问题。
2 二阶有源模拟带通滤波器的设计
2.1 基本参数的设定
二阶有源模拟带通滤波器电路,如图1所示。图中R1、C2组成低通网络,R3、C1组成高通网络,A、Ra、Rb组成了同相比例放大电路,三者共同组成了具有放大作用的二阶有源模拟带通滤波器,以下均简称为二阶带通滤波器。
根据图l可导出带通滤波器的传递函数为
式(5)为二阶带通滤波器传递函数典型表达式,其中ω0称为中心角频率。
令s=jω,代入式(4),可得带通滤波器的频率响应特性为
可画出其幅频响应曲线,如图2所示。图中,当ω=ω0时,电压放大倍数最大。带通滤波器的通频带宽度为BW0.7=ω0/(2πQ)=f0/Q,显然Q值越高,则通频带越窄。
通频带越窄,说明其对频率的选择性就越好,抑制能力也就越强。理想的幅频特性应该是宽度为BW0.7的矩形曲线,如图3(a)所示。在通频带内A(f)是平坦的,而通带外的各种干扰信号却具有无限抑制能力。各种带通滤波器总是力求趋近理想矩形特性。
然而实际设计出来的带通滤波器的幅频特性曲线,如图3(b)所示。
在工程上,定义增益自A(f0)下降3 dB(即0.707倍)时的上、下限频率之差值为通频带,用BW0.7表示。要求其值大于有用信号的频谱宽度,保证信号的不失真传输。
综上分析可知:当有源带通滤波器的同相放大倍数变化时,既影响通带增益A0,又影响Q值(进而影响通频带BW0.7),而中心角频率ω0与通带增益A0无关。
2.2 实际电路设计效果分析
为了能更好的了解二阶带通滤波器在实际电路中应用的效果,设计了如图4的电路进行实验验证。图中U1A部分为放大电路,UlB部分为二阶带通滤波器电路。