精密运算放大器一般指失调电压低于1mV的运放并同时强调失调电压随温度的变化漂移值要小于100?V。对于直流输入信号,VOS和它的温漂足够小就行了,但对于交流输入信号,我们还必须考虑运放的输入电压噪声和输入电流噪声,在很多应用情况下输入电压噪声和输入电流噪声显得更为重要一些。
传统的低噪声精密运放用双极(Bipolar)技术来设计,随着现有的很多产品采用电池供电,低功耗设计越来越重要,传统的精密运放在功耗和轨对轨(rail to rail)输出特性已不能满足市场的需要,而且传统的精密运放还有一个致命的缺点就是需要负电源供电,这在很多产品的系统设计中是不能容忍的。因而市场呼唤低功耗、低噪声、高速大带宽、轨对轨输出特性的精密运放,于是CMOS设计技术成为首选,相关高精密运算放大器应运而生。
随着DSP处理能力的提高和高速高精度ADC的发展,模拟信号链处理越来越向下述的系统结构靠近,如图1所示。依靠强大的DSP处理器运算能力,DSP处理器将在数字域对信号进行处理,比如信号的滤波、调制与解调、算法处理等等,以前用硬件实现的功能大量使用软件去代替,这种结构极大地节省了硬件成本,但是它对前级的运放提出了很高的要求。我们知道一个系统输入级的噪声性能往往决定了一个系统的设计成败,若运放噪声性能不好,DSP处理器功能再强大也不行。输入级运算放大器成为这种信号处理结构中的关键点,只有高速、低功耗、低噪声、大带宽、高输入阻抗、轨对轨输出特性的精密运放才能胜任。
图1: 模拟信号链处理过程示意图。
新型传感器层出不穷,对大部分传感器而言,其输出信号主要在低频端,而且信号幅度很小,比如应变压力传感器其输出一般在5mV左右,热电偶输出信号幅度在2mV左右,应用中和它们接口的运算放大器必须是精密运放。CMOS技术设计的运算放大器和双极技术相比,具有更大的失调电压和大的低频噪声,为了达到传感器系统设计需要的性能指标,CMOS设计技术需要在电路上进行特别的处理,比如自动调零(AutoZero)技术、相关双采样(CDS)技术、斩波(Chopping)稳零技术等。