地下水是水资源的重要组成部分,是战略性资源的主要部分。在保障城乡居民生活支持经济社会发展和维护生态平衡等方面具有十分重要的作用[1]。地下水位观测是一项基础性的水利工作,在研究地下水和工程建设等方面具有重要作用[2]。地下水位动态变化信息为地下水的开采工作、地方生态维护以及工程建设等方面提供了重要参考依据。鉴于地下水位满足实时采集实时监测的需要,本文给出了一种用于地下水动态水位监测的远程监测系统设计。
1 系统设计
1.1 系统设计要求 采集器的功能是将深井中的水位或水深信息收集起来,通过无线通信将数据发送给上位机系统。为了节省人力资源,采集器需要长时间免维护运行。采集系统要求架设维护方便、无需布线等,这就要求尽量减少施工环节,提高工作效率,降低成本。因此,提出了以下设计要求:
(1)通信可靠;
(2)低功耗,电池供电;
(3)架设成本低;
(4)易维护。
1.2 现状分析 目前市场上出现的采集模块静态功耗较大,一般为200 mW~600 mW不等,制作下位机体积大,需外加
蓄电池和太阳能板,容易被盗以及人为破坏;安装复杂,在无电源地区使用时架设成本较高,不适用于条件较苛刻的专用场合;集成无线RTU体积也偏大,不能进阶二次开发成专用产品,不能低压供电也限制了在此系统中的应用。
1.3 系统方案 GSM网络通信方式具有高速、可靠、覆盖范围广等优点,易于实现远程数据通信。 SMS是移动运营商提供的短消息服务,它基于GSM网络通信。SMS支持GSM设备点对点和一点对多点的消息传送,并可传送一条短信和容纳140 B的文本信息。在目标设备未在线或故障等情况下,短消息会暂存在运营商的服务器中,该种方式可以得到较高可靠程度。上位机系统可以是个人移动设备也可以是支持SMS的专用监测设备。
GPRS是基于GSM网络的高速数据业务,资费低,但在网络繁忙时数据丢包、掉线的情况时有发生。由于地下水变化相对缓慢,对系统的实时性要求不高,所以采用SMS方式进行无线数据通信足以满足要求,对于本系统资费同样低廉。
为了易于更换和维护采集器,采用通用的5号碱性电池供电。硬件上采用各功能模块选择性分离供电,软件上采用定时采集、定时上传的方式大大降低了功耗,确定了长时间电池供电的可行性,从而免去了布线和安装太阳能电池的工序和成本。采集器与GSM通信模块集成,缩小了体积,可内置于被测井口处,以方便安装和后期维护。
2 硬件设计
2.1 硬件结构 采集器(下位机)由微处理器、电池组、电源管理、GPRS模块、压力传感器、时钟日历、信号调理以及A/D转换器组成,如图1所示。
2.2 模块设计
(1)主控制器:ATmega88V单片机作为采集器的微控制单元,内置1 KB SRAM以及512 B的EEPROM存储器,免去了外部存储器,1.8 V~5.5 V宽泛的工作电压。为了节省功耗,单片机工作在32.768 kHz 的系统时钟频率下。
(2)时钟日历模块:MAX690芯片作为时钟日历模块,由独立的3 V电压的纽扣电池供电,与CPU进行实时通信,CPU查询时间确定采集器的工作状态。
(3)压力传感器:采用国产的KY型压力传感器,集成电压变送器,工作电压为10.5 V~15 V,输出信号为1 V~5V,量程为0 m~100m
(4)A/D转换器: 使用的是AD7921,12位A/D转换器,SPI串行接口,它由电压基准芯片AD780提供2.5 V的供电电压和参考电压。
(5)信号调理:采用通用双运放LM2904调理传感器输出信号和电池电压信号送给A/D转换器。LM2904的供电电压由LT1613提供(12 V),对压力变送器的1 V~5 V信号进行调理,首先前级为跟随器,运放的输出用一个电位器分压得到0.5 V~2.5 V信号,第二路信号为电池电压信号,同样的将池组电压VCC的可能的最大值(7 V)调整为小于A/D转换的满度值电压(2.5 V)。两路信号送给A/D转换器进行数字量化。
(6)电源管理:4节5号电池串联,取其中2节电池为单片机供电,用IRFU220与IRFU9530构成2个推挽输出由单片机的GPIO选择性地为测量部分(包括压力传感器、A/D转换器、信号调理电路)和GSM模块供电。在推挽输出后用一个LT1086稳压后为GSM模块提供3.6 V电源,由LT1613升压型电路芯片为传感器/变送器和模拟信号调理电路提供12 V电源。
(7)GSM模块:采用Wavecom公司的GR64模块,与单片机的接口为异步串行接口,编程时采用AT指令对模块进行设置、会话以及打包数据和发送信息。
2.3 测量误差分析