首先根据节点之间的不同距离(数据相关性不同)按一定算法将节点分为偶数集合Ej和奇数集合Oj。以Oj中的数据进行预测,根据Oj节点与其相邻的Ej节点进行通信后,用Ej节点信息预测出Oj节点信息,将该信息与原来Oj中的信息相减,从而得到细节分量dj。然后,Oi发送dj至参与预测的Ej中,Ej节点将原来信息与dj相加,从而得到近似分量sj,该分量将参与下一轮的迭代。以此类推,直到j=0为止。
该算法依靠节点与一定范围内的邻居进行通信。经过多次迭代后,节点之间的距离进一步扩大,小波也由精细尺度变换到了粗糙尺度,近似信息被集中在了少数节点中,细节信息被集中在了多数节点中,从而实现了网络数据的稀疏变换。通过对小波系数进行筛选,将所需信息进行lifting逆变换,可以应用于有损压缩处理。它的优点是:充分利用感测数据的相关性,进行有效的压缩变换;分布式计算,无中心节点,避免热点问题;将原来网络中瓶颈节点以及簇头节点的能量平均到整个网络中,充分起到了节能作用,延长了整个网络的寿命。
然而,该算法也有其自身的一些设计缺陷:首先,节点必须知道全网位置信息;其次,虽然最终与Sink节点的通信数据量是减少了,但是有很多额外开销用于了邻居节点之间的局部信号处理上,即很多能量消耗在了局部通信上。对于越密集、相关性越强的网络,该算法的效果越好。
在此基础上,南加州大学的Godwin Shen考虑到DWT_IRR算法中没有讨论的关于计算反向链路所需的开销,从而对该算法进行了优化。由于反向链路加重了不必要的通信开销,Godwin Shen提出预先为整个网络建立一棵最优路由树,使节点记录通信路由,从而消除反向链路开销。
3 总 结
基于应用领域的不同,以上算法各有其优缺点,如表1所示。
4 结 语
这里介绍了几类常用的无线传感器网络数据融合算法,并比较了其优缺点。数据融合是实现无线传感器节点节能目的的重要手段之一,目前的各种研究技术都还未成熟,新技术正不断涌现。例如当传感器节点具有移动能力时,网络拓扑如何保持实时更新;当环境恶劣时,如何保障通信的安全;如何进一步降低能耗;以及如何更好地借助数据稀疏性理论(如Compressd Sening)在图像处理中的应用,而将其引入到传感器网络数据压缩中改善融合效果,以上都是待解决的问题。未来还会有更多、更好、更合面的算法被不断提出。