0 引言
在X射线检测中,CCD数字化实时成像系统因其不需要进行胶片冲洗,成像速度快,得到的图像较传统胶片图像质量好而获得了广泛的应。而在弹道实验中,由于经常有高速运动的破片,以及高速高压气流和爆炸强冲击力等。往往会对CCD数字成像系统造成损坏,且防护装置体积庞大,因此,很多弹道实验无法使用CCD数字成像系统。
而传统的胶片成像使用化学处理X射线胶片,从图像的采集到技术人员的检测,至少需要20分钟。如果胶片曝光量不够或透照角度错误,还必须重新进行所有的程序。此外,还必须配备存放地点和经过培训的员工,并保证安全操作、存储和处理胶片冲洗药液。
CR(computed radiography)技术是介于胶片成像与CCD数字成像之间的中间技术。这种技术类似于胶片成像。它由成像板替代胶片将图像存储起来,然后采用激光扫描仪将成像板中的图像读出来.并将其转换成数字图像。
传统X射线胶片成像系统能摄照的部位都可以用CR成像,CR系统中代替胶片的成像板可重复使用,动态特性线性度比胶片好,图像处理过程不需要暗房,不需要任何化学溶液,可省掉繁琐的胶片冲洗过程,大大加快了成像速度,减轻了操作者的劳动强度;而且其图像信息是以数字形式读出,非常方便进行图像处理。
与CCD数字化实时成像相比,CR的最大优势在于仅以成像板代替X射线胶片。由于读取设备与成像板分离,故在弹道实验中的防护容易实施。
为了提高弹道实验图像诊断的效率和图像质量,南京理工大学瞬态物理国家重点实验室于2008年组建了用于弹道实验的X射线CR成像系统。
1 CR成像原理
CR成像技术将透过物体的X射线影像信息记录在由荧光物质制成的、有存储功能的荧光板上,这种存储荧光板又称成像板(image plate,简称IP)。IP板曝光后会在其荧光层中形成潜影,将带有潜影的IP板放入激光扫描仪中通过激光束扫描读取,即可将潜在的像还原成可见光的像,再进行计算机采集处理,从而得到数字图像。因此,CR成像的工作过程主要由X射线曝光和读取IP板潜影两部分组成。
1.1 曝光
当X射线辐射到成像板时,成像板内的增感屏将吸收的X射线转换成可见光的影像,同时荧光晶体中的电子被激发到导带,然后,电子将自发地回到半稳态能级,形成潜在影像。图1所示是其成像板的曝光原理示意图。